在线性回归中,因为对參数个数选择的问题是在问题求解之前已经确定好的,因此參数的个数不能非常好的确定,假设參数个数过少可能拟合度不好,产生欠拟合(underfitting)问题,或者參数过多,使得函数过于复杂产生过拟合问题(overfitting)。因此本节介绍的局部线性回归(LWR)能够降低这种风险...
分类:
其他好文 时间:
2014-09-07 15:56:35
阅读次数:
368
在线性回归中,由于对参数个数选择的问题是在问题求解之前已经确定好的,因此参数的个数不能很好的确定,如果参数个数过少可能拟合度不好,产生欠拟合(underfitting)问题,或者参数过多,使得函数过于复杂产生过拟合问题(overfitting)。因此本节介绍的局部线性回归(LWR)可以减少这样的风险。
欠拟合与过拟合
首先看下面的图
对于图中的一系列样本点,当我们采用y...
分类:
其他好文 时间:
2014-06-02 23:50:41
阅读次数:
430