标签:
事务机制
事务(Transaction)是数据库区别于文件系统的重要特性之一。事务会把数据库从一种一致状态转换为另一个种一致状态。在数据库提交工作时,可以确保其要么所有修改都已经保存了,要么所有修改都不保存。InnoDB存储引擎中的事务完全符合ACID的特性。
原子性是指整个数据库事务是不可分割的工作单位。只有使事务中所有的数据库操作执行都成功,才算整个事务成功。如果事务中任何一个SQL语句执行失败,那么已经执行成功的SQL语句也必须撤销,数据库状态应该退回到执行事务前的状态。
一致性指事务将数据库从一种状态转变为下一种一致的状态。在事务开始之前和事务结束以后,数据库的完整性约束没有被破坏。
一个事务的影响在该事务提交前对其他事务都不可见。
事务一旦提交,其结果就是永久性的。即使发生宕机等故障,数据库也能将数据恢复。
事务的实现
隔离性通过Mysql InnoDB锁就可以实现;
原子性、一致性、持久性通过数据库的redo和undo来完成;
要仔细解释事务机制如何实现的,其实在数据库文件部分已经略有提及。
事务控制语句
在MySQL命令行的默认设置下,事务都是自动提交的,即执行SQL语句后就会马上执行COMMIT操作。因此开始一个事务,必须使用BEGIN、START TRANSACTION,或者执行SET AUTOCOMMIT=0,以禁用当前会话的自动提交。
以下为事务控制语句:- START TRANSACTION | BEGIN:显示地开启一个事务。
- COMMIT:提交你的事务,并使得已对数据库做的所有修改成为永久性的。同时写入undo log,将日志缓冲刷新到redo log
- ROLLBACK:回滚结束事务,并撤销正在进行的所有未提交的修改。同时取出redo log。
- SAVEPOING identifier:SAVERPOINT允许你在事务中创建一个保存点,当没有一个保存点执行这句话时,会抛出异常。(以下语句没用过,只能做知识搬运工咯)
- RELEASE SAVERPOINT identifier:删除一个事务的保存点,当没有一个保存点执行这句话时,会抛出一个异常。
- ROLLBACK TO [SAVEPOINT] identifier:这个语句与SAVEPOINT一起用。可以把事务回归到标记点,而不回滚到此标记点之前的任何工作。
- SET TRANSACTION:这个语句用来设置事务的隔离级别。InnoDB存储引擎提供的事务隔离级别有:READ UNCOMMITTED、READ COMMITTED、REPEATABLE READ、SERIALIZABLE。
隐式提交的SQL语句
以下这些SQL语句会产生一个隐式的提交操作,即执行完这些语句后,会有一个隐式的COMMIT操作。
- DDL语句:ALTER DATABASE...UPGRADE DATA DIRECTORY NAME........
- 用来隐式的修改mysql架构的操作:CREATE USER、DROP USER、GRANT、RENAME USER、REVOKE、SET PASSWORD。
- 管理语句:ANALYZE TABLE、CACHE INDEX、CHECK TABLE、LOAD INDEX INTO CACHE、OPTIMIZE TABLE 、REPAIR TABLE。
对于事务操作的统计
对于数据库的两大性能指标:
QPS:question per second,每秒请求数
TPS:transaction per second,每秒事务处理的能力
计算TPS的方法是(com_commit+com_rollback)/time,用这种方法的前提是,所有的事务必须都是显式提交的。
事务隔离级别
在数据库操作中,为了有效保证并发读取数据的正确性,提出的事务隔离级别。数据库锁,也是为了构建这些隔离级别存在的。SQL标准定义的四个隔离级别为:- 未提交读(READ UNCOMMITTED):允许脏读,也就是可能读取到其他会话中未提交事务修改的数据;
- 提交读(READ COMMITTED):只能读取到已经提交的数据。Oracle等多数数据库默认都是该级别 (不重复读);
- 可重复读(REPEATABLE READ):可重复读。在同一个事务内的查询都是事务开始时刻一致的,InnoDB默认级别。在SQL标准中,该隔离级别消除了不可重复读,但是还存在幻象读;
- 串行读(SERIALIZABLE):InnoDB存储引擎会对每个SELECT语句后自动加上LOCK IN SHARE MODE,即给每个读取操作加一个共享锁,因此在这个事务隔离级别下,读占用锁了,一致性的非锁定读不再予以支持,一般不再本地事务中使用SERIALIZBLE的隔离级别,SERIALIZABLE的事务隔离级别主要用于InnoDB存储引擎的分布式事务。
隔离级别vs读现象(Isolation Levels vs Read Phenomena)
隔离级别
| 脏读(Dirty Read)
| 不可重复读(NonRepeatable Read)
| 幻读(Phantom Read)
|
未提交读(Read uncommitted) |
|
|
|
已提交读(Read committed)
|
|
|
|
可重复读(Repeatable read)
|
|
|
|
可串行化(Serializable)
|
|
|
|
脏读(Dirty reads (Uncommitted Dependency)
当一个事务允许读取另外一个事务修改但未提交的数据时,就可能发生脏读(dirty reads)。
事务2没有提交造成事务1的语句1两次执行得到不同的结果集。在未提交读(READ UNCOMMITTED)隔离级别唯一禁止的是更新混乱,即早期的更新可能出现在后来更新之前的结果集中。
不可重复读(non-repeatable read)
在一次事务中,当一行数据获取两遍得到不同的结果表示发生了“不可重复读(non-repeatable read)”。
在基于锁的并发控制中“不可重复读(non-repeatable read)”现象发生在当执行SELECT 操作时没有获得读锁(read locks)或者SELECT操作执行完后马上释放了读锁; 多版本并发控制中当没有要求一个提交冲突的事务回滚也会发生“不可重复读(non-repeatable read)”现象。
在这个例子中,事务2提交成功,因此他对id为1的行的修改就对其他事务可见了。但是事务1在此前已经从这行读到了另外一个“age”的值。在可序列化(SERIALIZABLE)和可重复读(REPEATABLE READS)的隔离级别,数据库在第二次SELECT请求的时候应该返回事务2更新之前的值。在提交读(READ COMMITTED)和未提交读(READ UNCOMMITTED),返回的是更新之后的值,这个现象就是不可重复读(non-repeatable read)。
有两种策略可以避免不可重复读(non-repeatable read)。一个是要求事务2延迟到事务1提交或者回滚之后再执行。这种方式实现了T1, T2 的串行化调度。串行化调度可以支持可重复读(repeatable reads)。
另一种策略是多版本并发控制。为了得到更好的并发性能,允许事务2先提交。但因为事务1在事务2之前开始,事务1必须在其开始执行时间点的数据库的快照上面操作。当事务1最终提交时候,数据库会检查其结果是否等价于T1, T2串行调度。如果等价,则允许事务1提交,如果不等价,事务1需要回滚并抛出个串行化失败的错误。
使用基于锁的并发控制,在可重复读(REPEATABLE READS)的隔离级别中,ID=1的行会被锁住,在事务1提交或回滚前一直阻塞语句2的执行。在提交读(READ COMMITTED)的级别,语句1第二次执行,age已经被修改了。
在多版本并发控制机制下,可序列化(SERIALIZABLE)级别,两次SELECT语句读到的数据都是事务1开始的快照,因此返回同样的数据。但是,如果事务1试图UPDATE这行数据,事务1会被要求回滚并抛出一个串行化失败的错误。
在提交读(READ COMMITTED)隔离级别,每个语句读到的是语句执行前的快照,因此读到更新前后不同的值。在这种级别不会有串行化的错误(因为这种级别不要求串行化),事务1也不要求重试。
幻读(phantom read)
在事务执行过程中,当两个完全相同的查询语句执行得到不同的结果集。这种现象称为“幻影读(phantom read)”
当事务没有获取范围锁的情况下执行SELECT ... WHERE操作可能会发生“幻影读(phantom read)”。
“幻影读(phantom read)”是不可重复读(Non-repeatable reads)的一种特殊场景:当事务1两次执行SELECT ... WHERE检索一定范围内数据的操作中间,事务2在这个表中创建了(如INSERT)了一行新数据,这条新数据正好满足事务1的“WHERE”子句。
不可重复读和幻读的区别
很多人容易搞混不可重复读和幻读,确实这两者有些相似。但不可重复读重点在于update和delete,而幻读的重点在于insert。
如果使用锁机制来实现这两种隔离级别,在可重复读中,该sql第一次读取到数据后,就将这些数据加锁,其它事务无法修改这些数据,就可以实现可重复读了。但这种方法却无法锁住insert的数据,所以当事务A先前读取了数据,或者修改了全部数据,事务B还是可以insert数据提交,这时事务A就会发现莫名其妙多了一条之前没有的数据,这就是幻读,不能通过行锁来避免。需要Serializable隔离级别 ,读用读锁,写用写锁,读锁和写锁互斥,这么做可以有效的避免幻读、不可重复读、脏读等问题,但会极大的降低数据库的并发能力。
所以说不可重复读和幻读最大的区别,就在于如何通过锁机制来解决他们产生的问题。
上文说的,是使用悲观锁机制来处理这两种问题,但是MySQL、ORACLE、PostgreSQL等成熟的数据库,出于性能考虑,都是使用了以乐观锁为理论基础的MVCC(多版本并发控制)来避免这两种问题。
MySQL学习笔记-事务相关话题
标签:
原文地址:http://www.cnblogs.com/snifferhu/p/4746030.html