标签:
【POJ 2187】 Beauty Contest (凸包-Graham扫描算法)
找平面最远点对 数据很大 用暴力会T..我感觉……
扫描出个凸包 然后枚举凸包上的点即可 没坑 int也可过 注意重边跟共线就行 代码下附赠几组数据
代码如下:
#include <iostream> #include <cstdio> #include <cstring> #include <cstdlib> #include <vector> #include <stack> #include <algorithm> #define ll long long using namespace std; typedef struct Line Line; typedef struct Point Point; ll mx,my; struct Point { ll x,y; ll operator - (const Point a)const { return (x-a.x)*(x-a.x)+(y-a.y)*(y-a.y); } bool operator < (const Point a)const { if(x == mx && y == my) return false; if(a.x == mx && a.y == my) return true; if((x-mx)*(a.y-my) - (y-my)*(a.x-mx) == 0) return (x-mx)*(x-mx)+(y-my)*(y-my) < (a.x-mx)*(a.x-mx)+(a.y-my)*(a.y-my); return (x-mx)*(a.y-my) - (y-my)*(a.x-mx) > 0; } }; struct Line { ll x,y; bool operator > (const Line a)const//顺时针 { return x*a.y - y*a.x > 0; } }; Point pt[50000]; stack <Point> s; vector <Point> tmp; void Read(int &n)//输入并进行极角排序 { scanf("%d",&n); int mm = 0; for(int i = 0; i < n; ++i) { scanf("%lld %lld",&pt[i].x,&pt[i].y); if(pt[i].x < pt[mm].x || (pt[i].x == pt[mm].x && pt[i].y < pt[mm].y)) mm = i; } mx = pt[mm].x; my = pt[mm].y; sort(pt,pt+n); } void SetTb(int n)//建凸包 { Point p1,p2; Line l1,l2; s.push(Point{mx,my}); s.push(pt[0]); for(int i = 1; i < n; ++i) { if(pt[i].x == mx && pt[i].y == my) break; p2 = s.top(); s.pop(); while(!s.empty()) { p1 = s.top(); s.pop(); l1.x = p2.x - p1.x; l1.y = p2.y - p1.y; l2.x = pt[i].x - p1.x; l2.y = pt[i].y - p1.y; if(l1 > l2) { s.push(p1); break; } p2 = p1; } s.push(p2); s.push(pt[i]); } } ll MaxLength()//从栈中不断出栈找最远点距 { int i; ll Maxlen = 0; while(!s.empty()) { Point tp; tp = s.top(); s.pop(); for(i = 0; i < tmp.size(); ++i) { Maxlen = max(Maxlen,tp-tmp[i]); } tmp.push_back(tp); } return Maxlen; } int main() { int n; Read(n); SetTb(n); printf("%lld\n",MaxLength()); return 0; } /* Input: 9 200 400 300 400 300 300 400 300 400 400 500 400 500 200 350 200 200 200 4 0 0 0 1 0 1 0 0 2 0 0 0 1 Output: 130000 1 1 */
版权声明:本文为博主原创文章,未经博主允许不得转载。
【POJ 2187】 Beauty Contest (凸包-Graham扫描算法)
标签:
原文地址:http://blog.csdn.net/challengerrumble/article/details/48029943