标签:
http://acm.hit.edu.cn/hoj/problem/view?id=2275
Source : SCU Programming Contest 2006 Final | |||
Time limit : 1 sec | Memory limit : 64 M |
Submitted : 1632, Accepted : 440
Given a number sequence which has N element(s), please calculate the number of different collocation for three number Ai, Aj, Ak, which satisfy that Ai < Aj > Ak and i < j < k.
InputThe first line is an integer N (N <= 50000). The second line contains N integer(s): A1, A2, ..., An(0 <= Ai <= 32768).
OutputThere is only one number, which is the the number of different collocation.
Sample Input5 1 2 3 4 1Sample Output
6
解法一
1.正序依次按如下步骤处理每个数据:用树状数组统计之前比它小的有多少,并记录在tmp数组里;从此数据开始向后更新更大的数。对此我要解释一下:树状数组的下标是数的大小,由于是按顺序来的,所以保证了i<j<k。由此可知道前面比此数小的有多少个。
2.将c数组清空后倒叙处理一遍数据。由此可知道后面比此数小的有多少个。
3.将每个数的两个数据相乘求和,最后用long long存储输出。
<pre name="code" class="cpp">#include<stdio.h> #include<iostream> #include<string.h> #include<algorithm> #define MAXN 50010 #define MAXM 32771 int a[MAXN]; int c[MAXM]; int tmp[MAXN]; int n; int lowbit(int x){ return x&(-x); } void add(int x,int ad){ while(x<MAXM){ c[x]+=ad; x+=lowbit(x); } } int sum(int x){ int res=0; while(x>0){ res+=c[x]; x-=lowbit(x); } return res; } int main(){ while(scanf("%d",&n)!=EOF){ long long ans=0; memset(tmp,0,sizeof(tmp)); memset(c,0,sizeof(c)); for(int i=1;i<=n;i++){ scanf("%d",&a[i]); a[i]++; tmp[i]=sum(a[i]-1); //注意是严格的大于 add(a[i],1); } memset(c,0,sizeof(c)); for(int i=n;i>=1;i--){ ans+=(long long)sum(a[i]-1)*tmp[i]; //(long long)很按理说重要,不过没有加也过了。 add(a[i],1); } printf("%lld\n",ans); } return 0; }
1 题目要求的是总共的搭配方式,满足Ai < Aj > Ak.并且i j k不同
2 我们开两个树状数组,第一个在输入的时候就去更新。然后我们在去枚举Aj 同时维护第二个树状数组,对于AI来说就是在第二个树状数组里面求和
然后在通过第一个树状数组就可以求出Ak的个数,把结果相乘即可
代码:
#include<cstdio> #include<cstring> #include<iostream> #include<algorithm> using namespace std; const int MAXN = 50010; int n , num[MAXN]; int treeNumOne[MAXN]; int treeNumTwo[MAXN]; int lowbit(int x){ return x&(-x); } int getSum(int *arr , int x){ int sum = 0; while(x){ sum += arr[x]; x -= lowbit(x); } return sum; } void add(int *arr , int x , int val){ while(x < MAXN){ arr[x] += val; x += lowbit(x); } } long long getAns(){ if(n < 3) return 0; long long ans = 0; add(treeNumTwo , num[1] , 1); for(int i = 2 ; i < n ; i++){ int x = getSum(treeNumTwo , num[i]-1); int y = getSum(treeNumOne , num[i]-1); add(treeNumTwo , num[i] , 1); ans += (x)*(y-x); } return ans; } int main(){ while(scanf("%d" , &n) != EOF){ memset(treeNumOne , 0 , sizeof(treeNumOne)); memset(treeNumTwo , 0 , sizeof(treeNumTwo)); for(int i = 1 ; i <= n ; i++){ scanf("%d" , &num[i]); num[i]++; add(treeNumOne , num[i] , 1); } printf("%lld\n" , getAns()); } return 0; }
版权声明:本文为博主原创文章,未经博主允许不得转载。
求序列中满足Ai < Aj > Ak and i < j < k的组数 树状数组 HIT 2275 Number sequence
标签:
原文地址:http://blog.csdn.net/acm_10000h/article/details/48039607