最近在做一个有关文本挖掘的项目,需要用到Ngram模型已经相对应的向量匹配相似度的技术
Ngram分词的程序
有位网友在问我,想了想写在这里吧,至于那些jar包也很好找,lucene jar ,在百度搜索都能找到
package edu.fjnu.huanghong;
import java.io.IOException;
import java.io.StringReader;
import org.apache.lucene.analysis.Tokenizer;
import org.apache.lucene.analysis.ngram.NGramTokenizer;
import org.apache.lucene.analysis.tokenattributes.CharTermAttribute;
import org.apache.lucene.analysis.tokenattributes.OffsetAttribute;
import org.apache.lucene.analysis.tokenattributes.PositionIncrementAttribute;
import org.apache.lucene.analysis.tokenattributes.PositionLengthAttribute;
import org.apache.lucene.analysis.tokenattributes.TermToBytesRefAttribute;
import org.apache.lucene.analysis.tokenattributes.TypeAttribute;
import org.apache.lucene.util.Version;
/*
 * 
 * import org.apache.lucene.analysis.ngram.Lucene43EdgeNGramTokenizer;
   import org.apache.lucene.analysis.ngram.Lucene43NGramTokenizer;
 * */
public class Ngram {	
	public static void main(String[] args) {
		String s = "捡 白色 iphone6 手机 壳 透明 失主 方式 15659119418  ";
		String[] str = s.split(" ");
		StringBuilder sb = new StringBuilder();
		for(int i = 0; i < str.length; i++){
			sb.append(str[i]);
		}
		System.out.println(sb.toString());
		StringReader sr = new StringReader(sb.toString());	
		//N-gram模型分词器
		Tokenizer tokenizer = new NGramTokenizer(Version.LUCENE_45,sr);
		testtokenizer(tokenizer);
	}
	private static void testtokenizer(Tokenizer tokenizer) {
			
		try {		
							
			tokenizer.reset();
			while(tokenizer.incrementToken())
		<span style="white-space:pre">	</span>{
				CharTermAttribute charTermAttribute=tokenizer.addAttribute(CharTermAttribute.class);
			)
				System.out.print(charTermAttribute.toString()+"|");
			}			
			tokenizer.end();
			tokenizer.close();
		} catch (IOException e) {
			e.printStackTrace();
		}		
	}
}版权声明:本文为博主原创文章,未经博主允许不得转载。
原文地址:http://blog.csdn.net/hhooong/article/details/48087611