码迷,mamicode.com
首页 > 编程语言 > 详细

multiprocessing在python中的高级应用-共享数据与同步

时间:2015-08-30 17:29:55      阅读:377      评论:0      收藏:0      [点我收藏+]

标签:python   数据共享   同步   

通常,进程之间彼此是完全孤立的,唯一的通信方式是队列或管道。但可以使用两个对象来表示共享数据。其实,这些对象使用了共享内存(通过mmap模块)使访问多个进程成为可能。

Value( typecode, arg1, … argN, lock )
在共享内容中常见ctypes对象。typecode要么是包含array模块使用的相同类型代码(如’i’,’d’等)的字符串,要么是来自ctypes模块的类型对象(如ctypes.c_int、ctypes.c_double等)。所有额外的位置参数arg1, arg2 ….. argN将传递给指定类型的构造函数。lock是只能使用关键字调用的参数,如果把它置为True(默认值),将创建一个新的锁定来包含对值的访问。如果传入一个现有锁定,比如Lock或RLock实例,该锁定将用于进行同步。如果v是Value创建的共享值的实例,便可使用v.value访问底层的值。例如,读取v.value将获取值,而赋值v.value将修改值。

RawValue( typecode, arg1, … ,argN)
同Value对象,但不存在锁定。

Array( typecode, initializer, lock )
在共享内存中创建ctypes数组。typecode描述了数组的内容,意义与Value()函数中的相同。initializer要么是设置数组初始大小的整数,要么是项目序列,其值和大小用于初始化数组。lock是只能使用关键字调用的参数,意义与Value()函数中相同。如果a是Array创建的共享数组的实例,便可使用标准的python索引、切片和迭代操作访问它的内容,其中每种操作均由锁定进行同步。对于字节字符串,a还具有a.value属性,可以吧整个数组当做一个字符串进行访问。

RawArray(typecode, initializer )
同Array对象,但不存在锁定。当所编写的程序必须一次性操作大量的数组项时,如果同时使用这种数据类型和用于同步的单独锁定(如果需要的话),性能将得到极大的提升。
除了使用Value()和Array()创建的共享值之外,multiprocessing模块还提供一下同步源于的共享版本。

![这里写图片描述](http://img.blog.csdn.net/20150830164730833)

这些对象的行为与threading模块中定义的名称相同的同步原语相似。请参考threading文档了解更多细节。
应该注意,使用多进程后,通常不必再担心与锁定、信号量或类似构造的底层同步,这一点与线程不相伯仲。在某种程度上,管道上的send()和receive()操作,以及队列上的put()和get()操作已经提供了同步功能。但是,在某写特定的设置下还是需要用到共享值和锁定。下面这个例子说明了如何使用共享数组代替管道,将一个浮点数的python列表发送给另一个进程:

import multiprocessing
class FloatChannel(object):
    def __init__(self,maxsize):
        self.buffer=multiprocessing.RawArray(‘d‘,maxsize)
        self.buffer_len=multiprocessing.Value(‘i‘)
        self.empty=multiprocessing.Semaphore(1)
        self.full=multiprocessing.Semaphore(0)
    def send(self,values):
        self.empty.acquire()  #只在缓存为空时继续
        nitems=len(values)  
        self.buffer_len=nitems  #设置缓冲区大小
        self.buffer[:nitems]=values #将复制到缓冲区中
        self.full.release() #发信号通知缓冲区已满
    def recv(self):
        self.full.acquire()     #只在缓冲区已满时继续
        values=self.buffer[:self.buffer_len.value]  #复制值
        self.empty.release()        #发送信号通知缓冲区为空
        return values
    #性能测试 接收多条消息
def consume_test(count,ch):
    for i in xrange(count):
        values=ch.recv()

#性能测试 发送多条消息
def produce_test(count,values,ch):
    for i in xrange(count):
        ch.send(values)
if __name__=="__main__":
    ch=FloatChannel(100000)
    p=multiprocessing.Process(target=consume_test,args=(1000,ch))
    p.start()
    values=[float(x) for x in xrange(100000)]
    produce_test(1000,values,ch)
    print "Done"
    p.join()

在我的计算机上执行性能测试时,通过FloatChannel发送一个较大的浮点数列表,速度比通过Pipe发送快大约80%,因为后者必须对所有值进行序列化和反序列化。

版权声明:本文为博主原创文章,未经博主允许不得转载。

multiprocessing在python中的高级应用-共享数据与同步

标签:python   数据共享   同步   

原文地址:http://blog.csdn.net/winterto1990/article/details/48106505

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!