码迷,mamicode.com
首页 > 编程语言 > 详细

【数据结构】之二叉树的java实现

时间:2015-09-11 23:18:58      阅读:260      评论:0      收藏:0      [点我收藏+]

标签:

二叉树的定义:

二叉树是树形结构的一个重要类型。许多实际问题抽象出来的数据结构往往是二叉树的形式,即使是一般的树也能简单地转换为二叉树,而且二叉树的存储结构及其算法都较为简单,因此二叉树显得特别重要。
二叉树(BinaryTree)是n(n≥0)个结点的有限集,它或者是空集(n=0),或者由一个根结点及两棵互不相交的、分别称作这个根的左子树和右子树的二叉树组成。
这个定义是递归的。由于左、右子树也是二叉树, 因此子树也可为空树。下图中展现了五种不同基本形态的二叉树。

 

技术分享

 

 

其中 (a) 为空树, (b) 为仅有一个结点的二叉树, (c) 是仅有左子树而右子树为空的二叉树, (d) 是仅有右子树而左子树为空的二叉树, (e) 是左、右子树均非空的二叉树。这里应特别注意的是,二叉树的左子树和右子树是严格区分并且不能随意颠倒的,图 (c) 与图 (d) 就是两棵不同的二叉树。

二叉树的遍历

对于二叉树来讲最主要、最基本的运算是遍历。
遍历二叉树 是指以一定的次序访问二叉树中的每个结点。所谓 访问结点 是指对结点进行各种操作的简称。例如,查询结点数据域的内容,或输出它的值,或找出结点位置,或是执行对结点的其他操作。遍历二叉树的过程实质是把二叉树的结点进行线性排列的过程。假设遍历二叉树时访问结点的操作就是输出结点数据域的值,那么遍历的结果得到一个线性序列。

从二叉树的递归定义可知,一棵非空的二叉树由根结点及左、右子树这三个基本部分组成。因此,在任一给定结点上,可以按某种次序执行三个操作:
 (1)访问结点本身(N),
 (2)遍历该结点的左子树(L),
 (3)遍历该结点的右子树(R)。
以上三种操作有六种执行次序:
 NLR、LNR、LRN、NRL、RNL、RLN。
注意:
前三种次序与后三种次序对称,故只讨论先左后右的前三种次序。
  由于被访问的结点必是某子树的根,所以N(Node)、L(Left subtlee)和R(Right subtree)又可解释为根、根的左子树和根的右子树。NLR、LNR和LRN分别又称为先根遍历、中根遍历和后根遍历。

 

二叉树的java实现

首先创建一棵二叉树如下图,然后对这颗二叉树进行遍历操作(遍历操作的实现分为递归实现和非递归实现),同时还提供一些方法如获取双亲结点、获取左孩子、右孩子等。

技术分享

 

java实现代码:

 

package study_02.datastructure.tree;

import java.util.Stack;

/**
 * 二叉树的链式存储
 * @author WWX
 */
public class BinaryTree {

    
    private TreeNode root=null;
    
    public BinaryTree(){
        root=new TreeNode(1,"rootNode(A)");
    }
    
    /**
     * 创建一棵二叉树
     * <pre>
     *           A
     *     B          C
     *  D     E            F
     *  </pre>
     * @param root
     * @author WWX
     */
    public void createBinTree(TreeNode root){
        TreeNode newNodeB = new TreeNode(2,"B");
        TreeNode newNodeC = new TreeNode(3,"C");
        TreeNode newNodeD = new TreeNode(4,"D");
        TreeNode newNodeE = new TreeNode(5,"E");
        TreeNode newNodeF = new TreeNode(6,"F");
        root.leftChild=newNodeB;
        root.rightChild=newNodeC;
        root.leftChild.leftChild=newNodeD;
        root.leftChild.rightChild=newNodeE;
        root.rightChild.rightChild=newNodeF;
    }
    
    
    public boolean isEmpty(){
        return root==null;
    }

    //树的高度
    public int height(){
        return height(root);
    }
    
    //节点个数
    public int size(){
        return size(root);
    }
    
    
    private int height(TreeNode subTree){
        if(subTree==null)
            return 0;//递归结束:空树高度为0
        else{
            int i=height(subTree.leftChild);
            int j=height(subTree.rightChild);
            return (i<j)?(j+1):(i+1);
        }
    }
    
    private int size(TreeNode subTree){
        if(subTree==null){
            return 0;
        }else{
            return 1+size(subTree.leftChild)
                    +size(subTree.rightChild);
        }
    }
    
    //返回双亲结点
    public TreeNode parent(TreeNode element){
        return (root==null|| root==element)?null:parent(root, element);
    }
    
    public TreeNode parent(TreeNode subTree,TreeNode element){
        if(subTree==null)
            return null;
        if(subTree.leftChild==element||subTree.rightChild==element)
            //返回父结点地址
            return subTree;
        TreeNode p;
        //现在左子树中找,如果左子树中没有找到,才到右子树去找
        if((p=parent(subTree.leftChild, element))!=null)
            //递归在左子树中搜索
            return p;
        else
            //递归在右子树中搜索
            return parent(subTree.rightChild, element);
    }
    
    public TreeNode getLeftChildNode(TreeNode element){
        return (element!=null)?element.leftChild:null;
    }
    
    public TreeNode getRightChildNode(TreeNode element){
        return (element!=null)?element.rightChild:null;
    }
    
    public TreeNode getRoot(){
        return root;
    }
    
    //在释放某个结点时,该结点的左右子树都已经释放,
    //所以应该采用后续遍历,当访问某个结点时将该结点的存储空间释放
    public void destroy(TreeNode subTree){
        //删除根为subTree的子树
        if(subTree!=null){
            //删除左子树
            destroy(subTree.leftChild);
            //删除右子树
            destroy(subTree.rightChild);
            //删除根结点
            subTree=null;
        }
    }
    
    public void traverse(TreeNode subTree){
        System.out.println("key:"+subTree.key+"--name:"+subTree.data);;
        traverse(subTree.leftChild);
        traverse(subTree.rightChild);
    }
    
    //前序遍历
    public void preOrder(TreeNode subTree){
        if(subTree!=null){
            visted(subTree);
            preOrder(subTree.leftChild);
            preOrder(subTree.rightChild);
        }
    }
    
    //中序遍历
    public void inOrder(TreeNode subTree){
        if(subTree!=null){
            inOrder(subTree.leftChild);
            visted(subTree);
            inOrder(subTree.rightChild);
        }
    }
    
    //后续遍历
    public void postOrder(TreeNode subTree) {
        if (subTree != null) {
            postOrder(subTree.leftChild);
            postOrder(subTree.rightChild);
            visted(subTree);
        }
    }
    
    //前序遍历的非递归实现
    public void nonRecPreOrder(TreeNode p){
        Stack<TreeNode> stack=new Stack<TreeNode>();
        TreeNode node=p;
        while(node!=null||stack.size()>0){
            while(node!=null){
                visted(node);
                stack.push(node);
                node=node.leftChild;
            }
            <span abp="507" style="font-size:14px;">while</span>(stack.size()>0){
                node=stack.pop();
                node=node.rightChild;
            } 
        }
    }
    
    //中序遍历的非递归实现
    public void nonRecInOrder(TreeNode p){
        Stack<TreeNode> stack =new Stack<BinaryTree.TreeNode>();
        TreeNode node =p;
        while(node!=null||stack.size()>0){
            //存在左子树
            while(node!=null){
                stack.push(node);
                node=node.leftChild;
            }
            //栈非空
            if(stack.size()>0){
                node=stack.pop();
                visted(node);
                node=node.rightChild;
            }
        }
    }
    
    //后序遍历的非递归实现
    public void noRecPostOrder(TreeNode p){
        Stack<TreeNode> stack=new Stack<BinaryTree.TreeNode>();
        TreeNode node =p;
        while(p!=null){
            //左子树入栈
            for(;p.leftChild!=null;p=p.leftChild){
                stack.push(p);
            }
            //当前结点无右子树或右子树已经输出
            while(p!=null&&(p.rightChild==null||p.rightChild==node)){
                visted(p);
                //纪录上一个已输出结点
                node =p;
                if(stack.empty())
                    return;
                p=stack.pop();
            }
            //处理右子树
            stack.push(p);
            p=p.rightChild;
        }
    }
    public void visted(TreeNode subTree){
        subTree.isVisted=true;
        System.out.println("key:"+subTree.key+"--name:"+subTree.data);;
    }
    
    
    /**
     * 二叉树的节点数据结构
     * @author WWX
     */
    private class  TreeNode{
        private int key=0;
        private String data=null;
        private boolean isVisted=false;
        private TreeNode leftChild=null;
        private TreeNode rightChild=null;
        
        public TreeNode(){}
        
        /**
         * @param key  层序编码
         * @param data 数据域
         */
        public TreeNode(int key,String data){
            this.key=key;
            this.data=data;
            this.leftChild=null;
            this.rightChild=null;
        }


    }
    
    
    //测试
    public static void main(String[] args) {
        BinaryTree bt = new BinaryTree();
        bt.createBinTree(bt.root);
        System.out.println("the size of the tree is " + bt.size());
        System.out.println("the height of the tree is " + bt.height());
        
        System.out.println("*******(前序遍历)[ABDECF]遍历*****************");
        bt.preOrder(bt.root);
        
        System.out.println("*******(中序遍历)[DBEACF]遍历*****************");
        bt.inOrder(bt.root);
       
        System.out.println("*******(后序遍历)[DEBFCA]遍历*****************");
        bt.postOrder(bt.root);
        
        System.out.println("***非递归实现****(前序遍历)[ABDECF]遍历*****************");
        bt.nonRecPreOrder(bt.root);
        
        System.out.println("***非递归实现****(中序遍历)[DBEACF]遍历*****************");
        bt.nonRecInOrder(bt.root);
        
        System.out.println("***非递归实现****(后序遍历)[DEBFCA]遍历*****************");
        bt.noRecPostOrder(bt.root);
    }
}
</span>

输出结果

the size of the tree is 6
the height of the tree is 3
*******(前序遍历)[ABDECF]遍历*****************
key:1--name:rootNode(A)
key:2--name:B
key:4--name:D
key:5--name:E
key:3--name:C
key:6--name:F
*******(中序遍历)[DBEACF]遍历*****************
key:4--name:D
key:2--name:B
key:5--name:E
key:1--name:rootNode(A)
key:3--name:C
key:6--name:F
*******(后序遍历)[DEBFCA]遍历*****************
key:4--name:D
key:5--name:E
key:2--name:B
key:6--name:F
key:3--name:C
key:1--name:rootNode(A)
***非递归实现****(前序遍历)[ABDECF]遍历*****************
key:1--name:rootNode(A)
key:2--name:B
key:4--name:D
key:5--name:E
key:3--name:C
key:6--name:F
***非递归实现****(中序遍历)[DBEACF]遍历*****************
key:4--name:D
key:2--name:B
key:5--name:E
key:1--name:rootNode(A)
key:3--name:C
key:6--name:F
***非递归实现****(后序遍历)[DEBFCA]遍历*****************
key:4--name:D
key:5--name:E
key:2--name:B
key:6--name:F
key:3--name:C
key:1--name:rootNode(A)

【数据结构】之二叉树的java实现

标签:

原文地址:http://www.cnblogs.com/xigua1hao/p/4802217.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!