码迷,mamicode.com
首页 > 编程语言 > 详细

Noip2008双栈排序

时间:2015-09-23 16:37:35      阅读:314      评论:0      收藏:0      [点我收藏+]

标签:

【问题描述】

  用两个栈使一个1...n的排列变得有序。一共有四个操作:

  A.stack1.push()   读入一个放入栈一

  B.stack1.pop()   弹出栈一放入输出序列

  C.stack2.push()  读入一个放入栈二

  D.stack2.pop()  弹出栈二放入输出序列

  给你一个初始的排列,求一个字典序最小的操作序列使得变得有序,若没有满足条件的操作序列,输出‘0‘。

  

  Sample.in                                Sample.out

  4     1 3 2 4                               a b a a b b a b

  4     2 3 4 1                               0

  3     2 3 1                                  a c a b b d

 

 

【分析】

  嗯嗯嗯...这题好有意思啊...然后开始埋头苦干,发现好神奇啊!

  1.栈原来真的可以排序诶!

  2.双栈原来也可以排序诶!

  3.原来第二个样例真的不能排序诶!

  ....于是沉默了....于是开始纠结....什么样的数据不能用双栈排序呢?

  ........

  思考了很久很久.....似乎想不出来什么东西....

  不过我在构造中发现....每当一个栈要挂的时候,往往可以祸水东引,将即将堵住的元素放到另一个栈中去,每次两个栈都堵住的时候...恩恩,双栈排序就挂了!

  于是开始想另一个问题:什么样的数据不能用单栈排序....

  随便造了一个:2 3 1 恩,就挂了。

  因为2应该在3前出去,但是因为1在后面,所以2出不去,就被3堵住了....

  所以只要有 i<j<k 满足 a[k]<a[i]<a[j] 就可以卡死一个栈了....

  【题外】【严谨证明】【copy from codevs】【不想看的记住这个结论就好了】

      考虑对于任意两个数a[i]和a[j]来说,它们不能压入同一个栈中的充要条件是什么(注意没有必要使它们同时存在于同一个栈中,只是压入了同一个栈).

      实际上,这个条件p是:存在一个k,使得i<j<k且a[k]<a[i]<a[j].    [猜对了有木有!]

      首先证明充分性,即如果满足条件p,那么这两个数一定不能压入同一个栈.这个结论很显然,使用反证法可证.

    假设这两个数压入了同一个栈,那么在压入a[k]的时候栈内情况如下: 

    …a[i]…a[j]… 
    因为a[k]比a[i]和a[j]都小,所以很显然,当a[k]没有被弹出的时候,另外两个数也都不能被弹出(否则输出序列中的数字顺序就不是1,2,3,…,n了). 
    而之后,无论其它的数字在什么时候被弹出,a[j]总是会在a[i]之前弹出.而a[j]>a[i],这显然是不正确的. 

      接下来证明必要性.也就是:如果两个数不可以压入同一个栈,那么它们一定满足条件p.
    这里我们来证明它的逆否命题,也就是"如果不满足条件p,那么这两个数一定可以压入同一个栈."     不满足条件p有两种情况: 1. 对于任意i<j<k且a[i]<a[j] , a[k]>a[i]; 2. 对于任意i<j , a[i]>a[j].       第一种情况下,很显然,在a[k]被压入栈的时候,a[i]已经被弹出栈.那么,a[k]不会对a[j]产生任何影响(这里可能有点乱,因为看起来,当a[j]<a[k]的时候,是会有影响的,但实际上,这还需要另一个数r,满足j<k<r且a[r]<a[j]<a[k],也就是证明充分性的时候所说的情况…而事实上我们现在并不考虑这个r,所以说a[k]对a[j]没有影响).       第二种情况下,我们可以发现这其实就是一个降序序列,所以所有数字都可以压入同一个栈.     这样,原命题的逆否命题得证,所以原命题得证.     此时,条件p为q1[i]和q1[j]不能压入同一个栈的充要条件也得证.

  

  所以如果遇到这样的 i,j,它们一定不能丢到一个栈里面去,于是给它们并查集连个虚点?或者连条什么边[二分图染色]。

  唔...下面就好办啦....[我打的二分图染色,就讲这个哈]

  二分图染色 [只有两种颜色1,0] 就是在每一个连通块上,对一个点染上黑色[belong[x]=1],然后对所有连的边染上和它不同的颜色[belong[v]=1^belong[x]],当然还得给每个元素下一个是否已经找到颜色的标记sure[],以免多次染色和漏掉矛盾。[矛盾的情况很好办咯...就是发现两个已经确定的,而且练了边的点染成了同一个颜色!....然后就枪毙了...]

  因为要求操作序列的字典序最小,所以我们希望前面的元素能尽可能放进栈一中,假设栈一中的都是颜色为黑的,那么只需要按照顺序对每一个不曾染过色的点染成黑色,然后拓展它所在的连通块即可。

  最后,我们都知道了所有点在哪个栈中....就可以开始开心的模拟了!

  记录一个cot表示现在希望弹出的元素是几,发现可以弹出cot的时候一直弹弹弹[ 弹走鱼尾纹 ] 就可以了,具体还不懂就看代码咯.....[有贴心小注释]

  

  

技术分享
 1 #include<cstdio>
 2 #include<cstring>
 3 
 4 using namespace std;
 5 
 6 inline int in(){    //读入优化 
 7     int x=0;char ch=getchar();
 8     while(ch>9 || ch<0) ch=getchar();
 9     while(ch>=0 && ch<=9) x=x*10+ch-0,ch=getchar();
10     return x;
11 }
12 
13 const int maxn=1010;
14 
15 struct Node{    //携带本人代码气息的邻接表 
16     int data,next;
17 }node[maxn*maxn];
18 
19 #define now node[point].data
20 #define then node[point].next
21 
22 int n,cnt,t1,t2,cot=1;
23 int a[maxn],head[maxn],belong[maxn];
24 int f[maxn],s1[maxn],s2[maxn];
25 bool sure[maxn],over;
26 
27 inline int Min(int a,int b){
28     if(a>b) return b;return a;
29 }
30 
31 inline void add(int u,int v){    //邻接表加边 
32     node[cnt].data=v;node[cnt].next=head[u];head[u]=cnt++;
33     node[cnt].data=u;node[cnt].next=head[v];head[v]=cnt++;
34 }
35 
36 void dfs(int x){
37     sure[x]=true;
38     for(int point=head[x];point!=-1;point=then)
39         if(sure[now]){    //如果相邻的点已经被染过色 
40             if(belong[now]^belong[x]);    //说明相邻两个点的颜色不同 
41             else{over=true;return;}
42         }
43         else    //如果相邻的点未曾染色 
44             belong[now]=1-belong[x],dfs(now); //染色,并扩展所在连通分块 
45 }
46 
47 inline void Pop(){    //弹出栈的函数,因为弹出一个栈,cot会 ++,所以可能会带来连锁弹栈 
48     while(s1[t1]==cot || s2[t2]==cot){
49         while(s1[t1]==cot && t1)
50             putchar(b),putchar( ),cot++,t1--;
51         while(s2[t2]==cot && t2)
52             putchar(d),putchar( ),cot++,t2--;
53     }
54 }
55 
56 int main(){
57     n=in();
58     for(int i=1;i<=n;i++) a[i]=in(),head[i]=-1;
59     
60     //对于任意两个数a[i]和a[j]来说,它们不能压入同一个栈中的充要条件是 : 存在一个k,使得i<j<k且a[k]<a[i]<a[j]    
61     f[n+1]=0x7f7f7f7f;
62     for(int i=n;i;i--)
63         f[i]=Min(f[i+1],a[i]);    //预处理出当前位置往后最小的 a[k] 
64     
65     for(int i=1;i<n;i++)
66     for(int j=i+1;j<n;j++)
67         if(a[i]<a[j] && a[i]>f[j+1]) add(i,j);
68     
69     for(int i=1;i<=n;i++)
70         if(!sure[i]){
71             dfs(i); //a[i]所在连通分块中,在序列中的第一个元素染成白色,也就是放入栈 1中[因为 belong[]的初值为 0] 
72             if(over){printf("0");return 0;}
73         }
74     
75     for(int i=1;i<=n;i++){
76         if(belong[i])    //模拟压栈 
77             putchar(c),putchar( ),s2[++t2]=a[i];
78         else
79             putchar(a),putchar( ),s1[++t1]=a[i];
80         if(a[i]==cot) Pop();
81     }
82     return 0;
83 }
View Code

 

Noip2008双栈排序

标签:

原文地址:http://www.cnblogs.com/Robert-Yuan/p/4832498.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!