标签:
ESIndividual.py
1 import numpy as np 2 import ObjFunction 3 4 5 class ESIndividual: 6 7 ‘‘‘ 8 individual of evolutionary strategy 9 ‘‘‘ 10 11 def __init__(self, vardim, bound): 12 ‘‘‘ 13 vardim: dimension of variables 14 bound: boundaries of variables 15 ‘‘‘ 16 self.vardim = vardim 17 self.bound = bound 18 self.fitness = 0. 19 self.trials = 0 20 21 def generate(self): 22 ‘‘‘ 23 generate a random chromsome for evolutionary strategy 24 ‘‘‘ 25 len = self.vardim 26 rnd = np.random.random(size=len) 27 self.chrom = np.zeros(len) 28 for i in xrange(0, len): 29 self.chrom[i] = self.bound[0, i] + 30 (self.bound[1, i] - self.bound[0, i]) * rnd[i] 31 32 def calculateFitness(self): 33 ‘‘‘ 34 calculate the fitness of the chromsome 35 ‘‘‘ 36 self.fitness = ObjFunction.GrieFunc( 37 self.vardim, self.chrom, self.bound)
ES.py
1 import numpy as np 2 from ESIndividual import ESIndividual 3 import random 4 import copy 5 import matplotlib.pyplot as plt 6 7 8 class EvolutionaryStrategy: 9 10 ‘‘‘ 11 the class for evolutionary strategy 12 ‘‘‘ 13 14 def __init__(self, sizepop, vardim, bound, MAXGEN, params): 15 ‘‘‘ 16 sizepop: population sizepop 17 vardim: dimension of variables 18 bound: boundaries of variables 19 MAXGEN: termination condition 20 params: algorithm required parameters, it is a list which is consisting of[delta_max, delta_min] 21 ‘‘‘ 22 self.sizepop = sizepop 23 self.vardim = vardim 24 self.bound = bound 25 self.MAXGEN = MAXGEN 26 self.params = params 27 self.population = [] 28 self.fitness = np.zeros(self.sizepop) 29 self.trace = np.zeros((self.MAXGEN, 2)) 30 31 def initialize(self): 32 ‘‘‘ 33 initialize the population of es 34 ‘‘‘ 35 for i in xrange(0, self.sizepop): 36 ind = ESIndividual(self.vardim, self.bound) 37 ind.generate() 38 self.population.append(ind) 39 40 def evaluation(self): 41 ‘‘‘ 42 evaluation the fitness of the population 43 ‘‘‘ 44 for i in xrange(0, self.sizepop): 45 self.population[i].calculateFitness() 46 self.fitness[i] = self.population[i].fitness 47 48 def solve(self): 49 ‘‘‘ 50 the evolution process of the evolutionary strategy 51 ‘‘‘ 52 self.t = 0 53 self.initialize() 54 self.evaluation() 55 bestIndex = np.argmax(self.fitness) 56 self.best = copy.deepcopy(self.population[bestIndex]) 57 while self.t < self.MAXGEN: 58 self.t += 1 59 tmpPop = self.mutation() 60 self.selection(tmpPop) 61 best = np.max(self.fitness) 62 bestIndex = np.argmax(self.fitness) 63 if best > self.best.fitness: 64 self.best = copy.deepcopy(self.population[bestIndex]) 65 66 self.avefitness = np.mean(self.fitness) 67 self.trace[self.t - 1, 0] = 68 (1 - self.best.fitness) / self.best.fitness 69 self.trace[self.t - 1, 1] = (1 - self.avefitness) / self.avefitness 70 print("Generation %d: optimal function value is: %f; average function value is %f" % ( 71 self.t, self.trace[self.t - 1, 0], self.trace[self.t - 1, 1])) 72 print("Optimal function value is: %f; " % self.trace[self.t - 1, 0]) 73 print "Optimal solution is:" 74 print self.best.chrom 75 self.printResult() 76 77 def mutation(self): 78 ‘‘‘ 79 mutate the population by a random normal distribution 80 ‘‘‘ 81 tmpPop = [] 82 for i in xrange(0, self.sizepop): 83 ind = copy.deepcopy(self.population[i]) 84 delta = self.params[0] + self.t * 85 (self.params[1] - self.params[0]) / self.MAXGEN 86 ind.chrom += np.random.normal(0.0, delta, self.vardim) 87 for k in xrange(0, self.vardim): 88 if ind.chrom[k] < self.bound[0, k]: 89 ind.chrom[k] = self.bound[0, k] 90 if ind.chrom[k] > self.bound[1, k]: 91 ind.chrom[k] = self.bound[1, k] 92 ind.calculateFitness() 93 tmpPop.append(ind) 94 return tmpPop 95 96 def selection(self, tmpPop): 97 ‘‘‘ 98 update the population 99 ‘‘‘ 100 for i in xrange(0, self.sizepop): 101 if self.fitness[i] < tmpPop[i].fitness: 102 self.population[i] = tmpPop[i] 103 self.fitness[i] = tmpPop[i].fitness 104 105 def printResult(self): 106 ‘‘‘ 107 plot the result of evolutionary strategy 108 ‘‘‘ 109 x = np.arange(0, self.MAXGEN) 110 y1 = self.trace[:, 0] 111 y2 = self.trace[:, 1] 112 plt.plot(x, y1, ‘r‘, label=‘optimal value‘) 113 plt.plot(x, y2, ‘g‘, label=‘average value‘) 114 plt.xlabel("Iteration") 115 plt.ylabel("function value") 116 plt.title("Evolutionary strategy for function optimization") 117 plt.legend() 118 plt.show()
运行程序:
1 if __name__ == "__main__": 2 3 bound = np.tile([[-600], [600]], 25) 4 es = ES(60, 25, bound, 1000, [10, 1]) 5 es.solve()
ObjFunction见简单遗传算法-python实现。
标签:
原文地址:http://www.cnblogs.com/biaoyu/p/4865353.html