码迷,mamicode.com
首页 > 移动开发 > 详细

Happy 2004(快速幂+乘法逆元)

时间:2015-10-18 20:05:47      阅读:195      评论:0      收藏:0      [点我收藏+]

标签:

Happy 2004

问题描述 :

Consider a positive integer X,and let S be the sum of all positive integer divisors of 2004^X. Your job is to determine S modulo 29 (the rest of the division of S by 29).

 

Take X = 1 for an example. The positive integer divisors of 2004^1 are 1, 2, 3, 4, 6, 12, 167, 334, 501, 668, 1002 and 2004. Therefore S = 4704 and S modulo 29 is equal to 6.

输入:

The input consists of several test cases. Each test case contains a line with the integer X (1 <= X <= 10000000).

 

A test case of X = 0 indicates the end of input, and should not be processed.

输出:

For each test case, in a separate line, please output the result of S modulo 29.

样例输入:

1
10000
0

样例输出:

6
10

 

设S(x)表示x的因子和。则题目求为:S(2004^X)mod 29
因子和S是积性函数,即满足性质1。

性质1 :如果 gcd(a,b)=1  则 S(a*b)= S(a)*S(b)
2004^X=4^X * 3^X *167^X
S(2004^X)=S(2^(2X)) * S(3^X) * S(167^X)

性质2 :如果 p 是素数 则 S(p^X)=1+p+p^2+…+p^X = (p^(X+1)-1)/(p-1)
因此:S(2004^X)=(2^(2X+1)-1) * (3^(X+1)-1)/2 * (167^(X+1)-1)/166
167%29 == 22
S(2004^X)=(2^(2X+1)-1) * (3^(X+1)-1)/2 * (22^(X+1)-1)/21

性质3 :(a*b)/c %M= a%M * b%M * inv(c)
其中inv(c)即满足 (c*inv(c))%M=1的最小整数,这里M=29
则inv(1)=1,inv(2)=15,inv(22)=15

有上得:
S(2004^X)=(2^(2X+1)-1) * (3^(X+1)-1)/2 * (22^(X+1)-1)/21
=(2^(2X+1)-1) * (3^(X+1)-1)*15 * (22^(X+1)-1)*18

 1 #include <cstdio>
 2 #include <iostream>
 3 #include <algorithm>
 4 #include <cstring>
 5 #include <cmath>
 6 #include <queue>
 7 #include <map>
 8 #include <set>
 9 using namespace std;
10 #define LL long long
11 const int INF=0x3f3f3f3f;
12 const double eps=1e-5;
13 int p=29;
14 LL pow_mod(LL x,LL n)
15 {
16     LL res=1;
17     while(n>0)
18     {
19         if(n&1)    res=res*x%p;
20         x=x*x%p;
21         n>>=1;
22     }
23     return res;
24 }
25 int main()
26 {
27     LL x,i;
28     while(cin>>x&&x)
29     {
30         int a=pow_mod(2,2*x+1);
31         int b=pow_mod(3,x+1);
32         int c=pow_mod(22,x+1);
33         int s=((a-1)*(b-1)*(c-1)*15*18)%29;
34         cout<<s<<endl;
35      }
36 
37 }

 

Happy 2004(快速幂+乘法逆元)

标签:

原文地址:http://www.cnblogs.com/a1225234/p/4890051.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!