标签:style blog http color 使用 strong
相关学习资料
linux内核设计与实现+原书第3版.pdf(3.3章) 深入linux内核架构(中文版).pdf 深入理解linux内核中文第三版.pdf 《独辟蹊径品内核Linux内核源代码导读》 http://www.yanyulin.info/pages/2013/11/linux0.html http://blog.csdn.net/ddna/article/details/4958058 http://www.cnblogs.com/coolgestar02/archive/2010/12/31/1922629.html http://blog.sina.com.cn/s/blog_4ba5b45e0102e3to.html http://www.kernel.org/
目录
1. Linux/Unix进程创建简介 2. fork()函数 3. exec()函数 4. 查看进程的启动过程工具
1. Linux/Unix进程创建简介
0x1: linux和windows在进程创建上的区别
unix/linux的进程创建和Windows有很大不一样
1. windows windows采用了createProcess()来进行新进程的创建,大致流程如下: 1) 申请一块全新的内存(包括内核空间和用户空间) 2) 打开新进程对应的磁盘文件,将文件内容复制到新申请的内存中 3) 启动主线程从新进程的函数入口点(默认是main)开始顺序执行 在windows的哲学中,每一个新进程都是一个新的、独立的内存空间,进程之间彼此相对独立。 虽然在内核对象中也有父进程和子进程这些字段,但是这只是一个弱关系,windows中的父子进程并没有强制性的依赖关系。 关于windows的进程创建过程,请参阅另一篇文章 http://www.cnblogs.com/LittleHann/p/3458736.html 2. linux/unix 对于linu/unix的操作系统来说,它并不像windows那样采用"产生(spawn)"进程的机制。 而是将创建进程的步骤分解到两个单独的函数中去执行: 1) fork() fork()通过"拷贝"当前进程,创建一个子进程。这个时候的子进程和父进程的区别仅仅在于PID(进程号)、PPID(父进程号)、和某些资源和统计量 2) exec() exec()函数则负责读取可执行文件并将其载入地址空间开始运行 把这两个函数(fork、exec)组合起来的最终效果就等同于windows中的createProcess
0x2: linux中的0号、1号进程
1. 进程0 Linux引导中创建的第一个进程,完成加载系统后,演变为进程调度、交换及存储管理进程(也就是说0号进程自从创建完1号进程后就不会再次去创建其他进程了,之后由1号进程负责新子进程的创建) Linux中1号进程是由0号进程来创建的,由于在创建进程时,程序一直运行在内核态,而进程运行在用户态,因此创建0号进程涉及到特权级的变化,即从特权级0变到特权级3,Linux是通过模拟中断返回来实现特权级的变化以及创建0号
进程,通过将0号进程的代码段选择子以及程序计数器EIP直接压入内核态堆栈,然后利用iret汇编指令中断返回跳转到0号进程运行。 2. 进程1 init 进程,由0进程创建,完成系统的初始化。是系统中所有其它用户进程的祖先进程。
0x3: exec函数
我们知道,linux使用fork和exec进行新进程的创建,这里的exec并不是指某一个特定的函数。Linux提供了:
#include <unistd.h> 1. int execl(const char *path, const char *arg, ...); 2. int execlp(const char *file, const char *arg, ...); 3. int execle(const char *path, const char *arg, ..., char *const envp[]); 4. int execv(const char *path, char *const argv[]); 5. int execvp(const char *file, char *const argv[]); 6. int execve(const char *path, char *const argv[], char *const envp[]);
这6个都是用以执行一个可执行文件的函数,它们统称为"exec函数",它们的差异在于对命令行参数和环境变量参数的传递方式不同
其中只有execve是真正意义上的系统调用,其它都是在此基础上经过包装的库函数。
以上函数的本质都是调用\arch\x86\kernel\process_32.c文件中实现的系统调用sys_execve()来执行一个可执行文件。
了解了linux中进程创建的基本知识之后,我们接下来可以继续学习一下linux中创建进程涉及到的2个核心函数fork、exec了
2. fork()函数
Fork的系统调用代码在\linux-2.6.32.63\arch\x86\kernel\process.c中
/* Sys_fork系统调用通过 do_fork()函数实现,通过对do_fork()函数传递不同的clone_flags来实现: 1. fork 2. clone 3. vfork */ int sys_fork(struct pt_regs *regs) { return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL); }
我们继续跟踪do_fork()的代码
\linux-2.6.32.63\kernel\fork.c
/* * Ok, this is the main fork-routine. * * It copies the process, and if successful kick-starts * it and waits for it to finish using the VM if required. */ long do_fork(unsigned long clone_flags, unsigned long stack_start, struct pt_regs *regs, unsigned long stack_size, int __user *parent_tidptr, int __user *child_tidptr) { struct task_struct *p; int trace = 0; long nr; /* * Do some preliminary argument and permissions checking before we * actually start allocating stuff */ if (clone_flags & CLONE_NEWUSER) { if (clone_flags & CLONE_THREAD) return -EINVAL; /* hopefully this check will go away when userns support is * complete */ if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) || !capable(CAP_SETGID)) return -EPERM; } /* * We hope to recycle these flags after 2.6.26 */ if (unlikely(clone_flags & CLONE_STOPPED)) { static int __read_mostly count = 100; if (count > 0 && printk_ratelimit()) { char comm[TASK_COMM_LEN]; count--; printk(KERN_INFO "fork(): process `%s‘ used deprecated " "clone flags 0x%lx\n", get_task_comm(comm, current), clone_flags & CLONE_STOPPED); } } /* * When called from kernel_thread, don‘t do user tracing stuff. */ if (likely(user_mode(regs))) trace = tracehook_prepare_clone(clone_flags); /* Do_fork()函数的核心是copy_process()函数,该函数完成了进程创建的绝大部分工作 */ p = copy_process(clone_flags, stack_start, regs, stack_size, child_tidptr, NULL, trace); /* * Do this prior waking up the new thread - the thread pointer * might get invalid after that point, if the thread exits quickly. */ if (!IS_ERR(p)) { struct completion vfork; trace_sched_process_fork(current, p); nr = task_pid_vnr(p); if (clone_flags & CLONE_PARENT_SETTID) put_user(nr, parent_tidptr); if (clone_flags & CLONE_VFORK) { p->vfork_done = &vfork; init_completion(&vfork); } audit_finish_fork(p); tracehook_report_clone(regs, clone_flags, nr, p); /* * We set PF_STARTING at creation in case tracing wants to * use this to distinguish a fully live task from one that * hasn‘t gotten to tracehook_report_clone() yet. Now we * clear it and set the child going. */ p->flags &= ~PF_STARTING; if (unlikely(clone_flags & CLONE_STOPPED)) { /* * We‘ll start up with an immediate SIGSTOP. */ sigaddset(&p->pending.signal, SIGSTOP); set_tsk_thread_flag(p, TIF_SIGPENDING); __set_task_state(p, TASK_STOPPED); } else { wake_up_new_task(p, clone_flags); } tracehook_report_clone_complete(trace, regs, clone_flags, nr, p); if (clone_flags & CLONE_VFORK) { freezer_do_not_count(); wait_for_completion(&vfork); freezer_count(); tracehook_report_vfork_done(p, nr); } } else { nr = PTR_ERR(p); } return nr; }
Do_fork()函数的核心是copy_process()函数,该函数完成了进程创建的绝大部分工作
继续跟踪copy_process()
\linux-2.6.32.63\kernel\fork.c
static struct task_struct *copy_process(unsigned long clone_flags, unsigned long stack_start, struct pt_regs *regs, unsigned long stack_size, int __user *child_tidptr, struct pid *pid, int trace) { int retval; struct task_struct *p; int cgroup_callbacks_done = 0; /* 1. 对传入的clone_flag进行检查 */ if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) return ERR_PTR(-EINVAL); if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) return ERR_PTR(-EINVAL); if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) return ERR_PTR(-EINVAL); if ((clone_flags & CLONE_PARENT) && current->signal->flags & SIGNAL_UNKILLABLE) return ERR_PTR(-EINVAL); retval = security_task_create(clone_flags); if (retval) goto fork_out; retval = -ENOMEM; /* 2. 调用了dup_task_struct()函数,该函数的主要作用是:为子进程创建一个新的内核栈,复制task_struct结构和thread_info结构,这里只是对结构完整的复制,所以子进程的进程描述符跟父进程完全一样 */ p = dup_task_struct(current); if (!p) goto fork_out; ftrace_graph_init_task(p); rt_mutex_init_task(p); #ifdef CONFIG_PROVE_LOCKING DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled); DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); #endif retval = -EAGAIN; if (atomic_read(&p->real_cred->user->processes) >= p->signal->rlim[RLIMIT_NPROC].rlim_cur) { if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) && p->real_cred->user != INIT_USER) goto bad_fork_free; } retval = copy_creds(p, clone_flags); if (retval < 0) goto bad_fork_free; retval = -EAGAIN; /* 3. 检查创建的进程是否超过了系统进程总量 */ if (nr_threads >= max_threads) goto bad_fork_cleanup_count; if (!try_module_get(task_thread_info(p)->exec_domain->module)) goto bad_fork_cleanup_count; p->did_exec = 0; delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ copy_flags(clone_flags, p); INIT_LIST_HEAD(&p->children); INIT_LIST_HEAD(&p->sibling); rcu_copy_process(p); p->vfork_done = NULL; spin_lock_init(&p->alloc_lock); init_sigpending(&p->pending); /* 4. 开始对子进程task_struct结构的初始化过程 */ p->utime = cputime_zero; p->stime = cputime_zero; p->gtime = cputime_zero; p->utimescaled = cputime_zero; p->stimescaled = cputime_zero; p->prev_utime = cputime_zero; p->prev_stime = cputime_zero; p->default_timer_slack_ns = current->timer_slack_ns; task_io_accounting_init(&p->ioac); acct_clear_integrals(p); posix_cpu_timers_init(p); p->lock_depth = -1; /* -1 = no lock */ do_posix_clock_monotonic_gettime(&p->start_time); p->real_start_time = p->start_time; monotonic_to_bootbased(&p->real_start_time); p->io_context = NULL; p->audit_context = NULL; cgroup_fork(p); #ifdef CONFIG_NUMA p->mempolicy = mpol_dup(p->mempolicy); if (IS_ERR(p->mempolicy)) { retval = PTR_ERR(p->mempolicy); p->mempolicy = NULL; goto bad_fork_cleanup_cgroup; } mpol_fix_fork_child_flag(p); #endif #ifdef CONFIG_TRACE_IRQFLAGS p->irq_events = 0; #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW p->hardirqs_enabled = 1; #else p->hardirqs_enabled = 0; #endif p->hardirq_enable_ip = 0; p->hardirq_enable_event = 0; p->hardirq_disable_ip = _THIS_IP_; p->hardirq_disable_event = 0; p->softirqs_enabled = 1; p->softirq_enable_ip = _THIS_IP_; p->softirq_enable_event = 0; p->softirq_disable_ip = 0; p->softirq_disable_event = 0; p->hardirq_context = 0; p->softirq_context = 0; #endif #ifdef CONFIG_LOCKDEP p->lockdep_depth = 0; /* no locks held yet */ p->curr_chain_key = 0; p->lockdep_recursion = 0; #endif #ifdef CONFIG_DEBUG_MUTEXES p->blocked_on = NULL; /* not blocked yet */ #endif p->bts = NULL; /* Perform scheduler related setup. Assign this task to a CPU. */ sched_fork(p, clone_flags); retval = perf_event_init_task(p); if (retval) goto bad_fork_cleanup_policy; if ((retval = audit_alloc(p))) goto bad_fork_cleanup_policy; /* copy all the process information */ if ((retval = copy_semundo(clone_flags, p))) goto bad_fork_cleanup_audit; if ((retval = copy_files(clone_flags, p))) goto bad_fork_cleanup_semundo; if ((retval = copy_fs(clone_flags, p))) goto bad_fork_cleanup_files; if ((retval = copy_sighand(clone_flags, p))) goto bad_fork_cleanup_fs; if ((retval = copy_signal(clone_flags, p))) goto bad_fork_cleanup_sighand; if ((retval = copy_mm(clone_flags, p))) goto bad_fork_cleanup_signal; if ((retval = copy_namespaces(clone_flags, p))) goto bad_fork_cleanup_mm; if ((retval = copy_io(clone_flags, p))) goto bad_fork_cleanup_namespaces; retval = copy_thread(clone_flags, stack_start, stack_size, p, regs); if (retval) goto bad_fork_cleanup_io; if (pid != &init_struct_pid) { retval = -ENOMEM; pid = alloc_pid(p->nsproxy->pid_ns); if (!pid) goto bad_fork_cleanup_io; if (clone_flags & CLONE_NEWPID) { retval = pid_ns_prepare_proc(p->nsproxy->pid_ns); if (retval < 0) goto bad_fork_free_pid; } } p->pid = pid_nr(pid); /* 5. 如果设置了同在一个线程组则继承TGID。对于普通进程来说TGID和PID相等,对于线程来说,同一线程组内的所有线程的TGID都相等,这使得这些多线程可以通过调用getpid()获得相同的PID */ p->tgid = p->pid; if (clone_flags & CLONE_THREAD) p->tgid = current->tgid; if (current->nsproxy != p->nsproxy) { retval = ns_cgroup_clone(p, pid); if (retval) goto bad_fork_free_pid; } p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL; /* * Clear TID on mm_release()? */ p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL; #ifdef CONFIG_FUTEX p->robust_list = NULL; #ifdef CONFIG_COMPAT p->compat_robust_list = NULL; #endif INIT_LIST_HEAD(&p->pi_state_list); p->pi_state_cache = NULL; #endif if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) p->sas_ss_sp = p->sas_ss_size = 0; clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE); #ifdef TIF_SYSCALL_EMU clear_tsk_thread_flag(p, TIF_SYSCALL_EMU); #endif clear_all_latency_tracing(p); /* ok, now we should be set up.. */ p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL); p->pdeath_signal = 0; p->exit_state = 0; p->group_leader = p; INIT_LIST_HEAD(&p->thread_group); cgroup_fork_callbacks(p); cgroup_callbacks_done = 1; /* Need tasklist lock for parent etc handling! */ write_lock_irq(&tasklist_lock); /* CLONE_PARENT re-uses the old parent */ if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { p->real_parent = current->real_parent; p->parent_exec_id = current->parent_exec_id; } else { p->real_parent = current; p->parent_exec_id = current->self_exec_id; } spin_lock(¤t->sighand->siglock); recalc_sigpending(); if (signal_pending(current)) { spin_unlock(¤t->sighand->siglock); write_unlock_irq(&tasklist_lock); retval = -ERESTARTNOINTR; goto bad_fork_free_pid; } if (clone_flags & CLONE_THREAD) { atomic_inc(¤t->signal->count); atomic_inc(¤t->signal->live); p->group_leader = current->group_leader; list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group); } if (likely(p->pid)) { list_add_tail(&p->sibling, &p->real_parent->children); tracehook_finish_clone(p, clone_flags, trace); if (thread_group_leader(p)) { if (clone_flags & CLONE_NEWPID) p->nsproxy->pid_ns->child_reaper = p; p->signal->leader_pid = pid; tty_kref_put(p->signal->tty); p->signal->tty = tty_kref_get(current->signal->tty); attach_pid(p, PIDTYPE_PGID, task_pgrp(current)); attach_pid(p, PIDTYPE_SID, task_session(current)); list_add_tail_rcu(&p->tasks, &init_task.tasks); __get_cpu_var(process_counts)++; } attach_pid(p, PIDTYPE_PID, pid); nr_threads++; } total_forks++; spin_unlock(¤t->sighand->siglock); write_unlock_irq(&tasklist_lock); proc_fork_connector(p); cgroup_post_fork(p); perf_event_fork(p); return p; /* 6. 对task_struct结构的初始化完了就该继续copy其他的资源了,例如: 1) 文件 2) 句柄 3) 内核资源 */ bad_fork_free_pid: if (pid != &init_struct_pid) free_pid(pid); bad_fork_cleanup_io: if (p->io_context) exit_io_context(p); bad_fork_cleanup_namespaces: exit_task_namespaces(p); bad_fork_cleanup_mm: if (p->mm) mmput(p->mm); bad_fork_cleanup_signal: if (!(clone_flags & CLONE_THREAD)) __cleanup_signal(p->signal); bad_fork_cleanup_sighand: __cleanup_sighand(p->sighand); bad_fork_cleanup_fs: exit_fs(p); /* blocking */ bad_fork_cleanup_files: exit_files(p); /* blocking */ bad_fork_cleanup_semundo: exit_sem(p); bad_fork_cleanup_audit: audit_free(p); bad_fork_cleanup_policy: perf_event_free_task(p); #ifdef CONFIG_NUMA mpol_put(p->mempolicy); bad_fork_cleanup_cgroup: #endif cgroup_exit(p, cgroup_callbacks_done); delayacct_tsk_free(p); module_put(task_thread_info(p)->exec_domain->module); bad_fork_cleanup_count: atomic_dec(&p->cred->user->processes); exit_creds(p); bad_fork_free: free_task(p); fork_out: return ERR_PTR(retval); }
继续跟踪dup_task_struct()
\linux-2.6.32.63\kernel\fork.c
static struct task_struct *dup_task_struct(struct task_struct *orig) { struct task_struct *tsk; struct thread_info *ti; unsigned long *stackend; int err; prepare_to_copy(orig); /* 1. 通过alloc_task_struct()函数创建内核栈和task_struct结构空间 */ tsk = alloc_task_struct(); if (!tsk) return NULL; /* 2. 分配thread_info结构空间 */ ti = alloc_thread_info(tsk); if (!ti) { free_task_struct(tsk); return NULL; } /* 3. 为整个task_struct结构复制 */ err = arch_dup_task_struct(tsk, orig); if (err) goto out; tsk->stack = ti; err = prop_local_init_single(&tsk->dirties); if (err) goto out; /* 4. 调用setup_thread_stack()函数为thread_info结构复制 */ setup_thread_stack(tsk, orig); stackend = end_of_stack(tsk); *stackend = STACK_END_MAGIC; /* for overflow detection */ #ifdef CONFIG_CC_STACKPROTECTOR tsk->stack_canary = get_random_int(); #endif /* 更新该用户的user_struct结构,累加相应的计数器,由atomic_inc()函数完成 */ atomic_set(&tsk->usage,2); atomic_set(&tsk->fs_excl, 0); #ifdef CONFIG_BLK_DEV_IO_TRACE tsk->btrace_seq = 0; #endif tsk->splice_pipe = NULL; account_kernel_stack(ti, 1); return tsk; out: free_thread_info(ti); free_task_struct(tsk); return NULL; }
3. exec()函数
我们知道,所有的exec家族的函数最终都是调用了sys_execve()这个系统调用来实现的
\arch\x86\kernel\process_32.c
int sys_execve(struct pt_regs *regs) { int error; char *filename; /* 1. 将可执行文件的名称装入到一个新分配的页面中 */ filename = getname((char __user *) regs->bx); error = PTR_ERR(filename); if (IS_ERR(filename)) goto out; /* 调用do_execve()执行可执行文件 */ error = do_execve(filename, (char __user * __user *) regs->cx, (char __user * __user *) regs->dx, regs); if (error == 0) { /* Make sure we don‘t return using sysenter.. */ set_thread_flag(TIF_IRET); } putname(filename); out: return error; }
继续跟踪do_execve()
linux-2.6.32.63\fs\exec.c
int do_execve(char * filename, char __user *__user *argv, char __user *__user *envp, struct pt_regs * regs) { /* 1. 保存要执行的文件相关的数据 */ struct linux_binprm *bprm; struct file *file; struct files_struct *displaced; bool clear_in_exec; int retval; retval = unshare_files(&displaced); if (retval) goto out_ret; retval = -ENOMEM; bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); if (!bprm) goto out_files; retval = prepare_bprm_creds(bprm); if (retval) goto out_free; retval = check_unsafe_exec(bprm); if (retval < 0) goto out_free; clear_in_exec = retval; current->in_execve = 1; /* 2. 打开要执行的文件,并检查其有效性(这里的检查并不完备) */ file = open_exec(filename); retval = PTR_ERR(file); if (IS_ERR(file)) goto out_unmark; /* 3. 在多处理器系统中才执行,用以分配负载最低的CPU来执行新程序 */ sched_exec(); /* 4. 填充linux_binprm结构 */ bprm->file = file; bprm->filename = filename; bprm->interp = filename; retval = bprm_mm_init(bprm); if (retval) goto out_file; bprm->argc = count(argv, MAX_ARG_STRINGS); if ((retval = bprm->argc) < 0) goto out; bprm->envc = count(envp, MAX_ARG_STRINGS); if ((retval = bprm->envc) < 0) goto out; /* 5. 检查文件是否可以被执行,填充linux_binprm结构中的e_uid和e_gid项 */ retval = prepare_binprm(bprm); if (retval < 0) goto out; retval = copy_strings_kernel(1, &bprm->filename, bprm); if (retval < 0) goto out; bprm->exec = bprm->p; retval = copy_strings(bprm->envc, envp, bprm); if (retval < 0) goto out; /* 6. 将文件名、环境变量和命令行参数拷贝到新分配的页面中 */ retval = copy_strings(bprm->argc, argv, bprm); if (retval < 0) goto out; current->flags &= ~PF_KTHREAD; /* 7. 查询能够处理该可执行文件格式的处理函数,并调用相应的load_library方法进行处理 */ retval = search_binary_handler(bprm,regs); if (retval < 0) goto out; /* execve succeeded */ current->fs->in_exec = 0; current->in_execve = 0; acct_update_integrals(current); /* 8. 执行成功 */ free_bprm(bprm); if (displaced) put_files_struct(displaced); return retval; out: if (bprm->mm) { acct_arg_size(bprm, 0); mmput(bprm->mm); } out_file: if (bprm->file) { allow_write_access(bprm->file); fput(bprm->file); } out_unmark: if (clear_in_exec) current->fs->in_exec = 0; current->in_execve = 0; out_free: free_bprm(bprm); out_files: if (displaced) reset_files_struct(displaced); out_ret: return retval; }
4. 查看进程的启动过程工具
要想查看进程的启动过程,可以使用两个工具: strace和LD_DEBUG
source:
#include <stdlib.h> #include <stdio.h> int main() { printf("hello world\n"); return 0; }
编译程序:
gcc -o hello -O2 hello.c
strace -tt ./hello
05:47:11.645477 execve("./hello", ["./hello"], [/* 38 vars */]) = 0 05:47:11.646521 brk(0) = 0x82f8000 05:47:11.646660 mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xb77fd000 05:47:11.646745 access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or directory) 05:47:11.646929 open("/etc/ld.so.cache", O_RDONLY) = 3 05:47:11.647012 fstat64(3, {st_mode=S_IFREG|0644, st_size=50450, ...}) = 0 05:47:11.647176 mmap2(NULL, 50450, PROT_READ, MAP_PRIVATE, 3, 0) = 0xb77f0000 05:47:11.647223 close(3) = 0 05:47:11.647348 open("/lib/libc.so.6", O_RDONLY) = 3 05:47:11.647409 read(3, "\177ELF\1\1\1\3\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0@\356X\0004\0\0\0"..., 512) = 512 05:47:11.647496 fstat64(3, {st_mode=S_IFREG|0755, st_size=1906124, ...}) = 0 05:47:11.647605 mmap2(0x578000, 1665416, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0x578000 05:47:11.647648 mprotect(0x708000, 4096, PROT_NONE) = 0 05:47:11.647693 mmap2(0x709000, 12288, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x190) = 0x709000 05:47:11.647761 mmap2(0x70c000, 10632, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x70c000 05:47:11.647819 close(3) = 0 05:47:11.648707 mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xb77ef000 05:47:11.648797 set_thread_area({entry_number:-1 -> 6, base_addr:0xb77ef6c0, limit:1048575, seg_32bit:1, contents:0, read_exec_only:0, limit_in_pages:1, seg_not_present:0,
useable:1}) = 0 05:47:11.649201 mprotect(0x709000, 8192, PROT_READ) = 0 05:47:11.649272 mprotect(0x570000, 4096, PROT_READ) = 0 05:47:11.649326 munmap(0xb77f0000, 50450) = 0 05:47:11.649560 fstat64(1, {st_mode=S_IFCHR|0620, st_rdev=makedev(136, 0), ...}) = 0 05:47:11.649678 mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xb77fc000 05:47:11.649754 write(1, "hello world\n", 12hello world ) = 12 05:47:11.649829 exit_group(0) = ?
LD_DEBUG=libs ./hello
26605: find library=libc.so.6 [0]; searching 26605: search cache=/etc/ld.so.cache 26605: trying file=/lib/libc.so.6 26605: 26605: 26605: calling init: /lib/libc.so.6 26605: 26605: 26605: initialize program: ./hello 26605: 26605: 26605: transferring control: ./hello 26605: hello world 26605: 26605: calling fini: ./hello [0] 26605: 26605: 26605: calling fini: /lib/libc.so.6 [0] 26605:
Copyright (c) 2014 LittleHann All rights reserved
标签:style blog http color 使用 strong
原文地址:http://www.cnblogs.com/LittleHann/p/3853854.html