本文的代码基于OpenCV for Android 3.0
在opencv中,矩阵的类型结构被定义在opencv2/core/cvdef.h中,如下
#define CV_CN_MAX 512
#define CV_CN_SHIFT 3
#define CV_DEPTH_MAX (1 << CV_CN_SHIFT)
#define CV_8U 0
#define CV_8S 1
#define CV_16U 2
#define CV_16S 3
#define CV_32S 4
#define CV_32F 5
#define CV_64F 6
#define CV_USRTYPE1 7
#define CV_MAT_DEPTH_MASK (CV_DEPTH_MAX - 1)
#define CV_MAT_DEPTH(flags) ((flags) & CV_MAT_DEPTH_MASK)
#define CV_MAKETYPE(depth,cn) (CV_MAT_DEPTH(depth) + (((cn)-1) << CV_CN_SHIFT))
#define CV_MAKE_TYPE CV_MAKETYPE
#define CV_8UC1 CV_MAKETYPE(CV_8U,1)
#define CV_8UC2 CV_MAKETYPE(CV_8U,2)
#define CV_8UC3 CV_MAKETYPE(CV_8U,3)
#define CV_8UC4 CV_MAKETYPE(CV_8U,4)
#define CV_8UC(n) CV_MAKETYPE(CV_8U,(n))
#define CV_8SC1 CV_MAKETYPE(CV_8S,1)
#define CV_8SC2 CV_MAKETYPE(CV_8S,2)
#define CV_8SC3 CV_MAKETYPE(CV_8S,3)
#define CV_8SC4 CV_MAKETYPE(CV_8S,4)
#define CV_8SC(n) CV_MAKETYPE(CV_8S,(n))
#define CV_16UC1 CV_MAKETYPE(CV_16U,1)
#define CV_16UC2 CV_MAKETYPE(CV_16U,2)
#define CV_16UC3 CV_MAKETYPE(CV_16U,3)
#define CV_16UC4 CV_MAKETYPE(CV_16U,4)
#define CV_16UC(n) CV_MAKETYPE(CV_16U,(n))
#define CV_16SC1 CV_MAKETYPE(CV_16S,1)
#define CV_16SC2 CV_MAKETYPE(CV_16S,2)
#define CV_16SC3 CV_MAKETYPE(CV_16S,3)
#define CV_16SC4 CV_MAKETYPE(CV_16S,4)
#define CV_16SC(n) CV_MAKETYPE(CV_16S,(n))
#define CV_32SC1 CV_MAKETYPE(CV_32S,1)
#define CV_32SC2 CV_MAKETYPE(CV_32S,2)
#define CV_32SC3 CV_MAKETYPE(CV_32S,3)
#define CV_32SC4 CV_MAKETYPE(CV_32S,4)
#define CV_32SC(n) CV_MAKETYPE(CV_32S,(n))
#define CV_32FC1 CV_MAKETYPE(CV_32F,1)
#define CV_32FC2 CV_MAKETYPE(CV_32F,2)
#define CV_32FC3 CV_MAKETYPE(CV_32F,3)
#define CV_32FC4 CV_MAKETYPE(CV_32F,4)
#define CV_32FC(n) CV_MAKETYPE(CV_32F,(n))
#define CV_64FC1 CV_MAKETYPE(CV_64F,1)
#define CV_64FC2 CV_MAKETYPE(CV_64F,2)
#define CV_64FC3 CV_MAKETYPE(CV_64F,3)
#define CV_64FC4 CV_MAKETYPE(CV_64F,4)
#define CV_64FC(n) CV_MAKETYPE(CV_64F,(n))
可以看出都是通过一个CV_MAKETYPE宏定义的,该宏有两个参数,第一个参数是数据位深度,不同数据结构的位深度的值在前面的宏中定义过了,比如
CV_8U 8位无符号整型(0-255)
CV_8S 8位有符号整型(-128-127)
CV_16U 16位无符号整型(0-65535)
CV_16S 16位有符号整型(-32768-32767)
CV_32S 32位有符号整型(-2147483648-2147483647)
CV_32F 32为浮点型
CV_64F 64位浮点型
Depth的最大值为8,一般0到7,即CV_8U到CV_USRTYPE1,这个可以从宏
#define CV_CN_SHIFT 3
#define CV_DEPTH_MAX (1 << CV_CN_SHIFT)
看出CV_DEPTH_MAX 的值,1左移3就是8,这个值需要占3位
第二个参数指明每个元素的通道数,每个元素至少需要有一个通道数,直接使用CV_8U这样的类型表示的是一个通道
从宏
#define CV_CN_MAX 512
可以看出通道数最大是512,这个值需要占9位
而CV_MAKETYPE这个宏就是将位深度depth作为低3位,通道数作为高9位,总共需要12位,形成一个type值,即矩阵类型。具体的计算过程见上面定义的几个宏CV_MAKETYPE,CV_MAT_DEPTH,CV_MAT_DEPTH_MASK
你会发现这个过程和Android中的MeasureSpec类是如此相似
DataType定义在opencv2/core/traits.hpp中,该类的作用主要是将一些基本数据类型转换为opencv中的矩阵类型。这个类涉及到一个c++的模板的特性,有兴趣搜索c++ traits,这里给出两篇参考文章
template<typename _Tp> class DataType
{
public:
typedef _Tp value_type;
typedef value_type work_type;
typedef value_type channel_type;
typedef value_type vec_type;
enum { generic_type = 1,
depth = -1,
channels = 1,
fmt = 0,
type = CV_MAKETYPE(depth, channels)
};
};
我们可以调用DataType::type、DataType::type类似的结构去获得一个矩阵类型
内部有几个c++模板类,定义在opencv2/core/types.hpp中
Point_是一个可以认为是一个点的封装,内部具有x,y属性,代表这个点的坐标,并重载了一些运算符
template<typename _Tp> class Point_
{
public:
typedef _Tp value_type;
// various constructors
Point_();
Point_(_Tp _x, _Tp _y);
Point_(const Point_& pt);
Point_(const Size_<_Tp>& sz);
Point_(const Vec<_Tp, 2>& v);
Point_& operator = (const Point_& pt);
//! conversion to another data type
template<typename _Tp2> operator Point_<_Tp2>() const;
//! conversion to the old-style C structures
operator Vec<_Tp, 2>() const;
//! dot product
_Tp dot(const Point_& pt) const;
//! dot product computed in double-precision arithmetics
double ddot(const Point_& pt) const;
//! cross-product
double cross(const Point_& pt) const;
//! checks whether the point is inside the specified rectangle
bool inside(const Rect_<_Tp>& r) const;
_Tp x, y; //< the point coordinates
};
同时用typedef重新定义了float,int,double类型的点,默认情况下我们使用的Point是整型的
typedef Point_<int> Point2i;
typedef Point_<float> Point2f;
typedef Point_<double> Point2d;
typedef Point2i Point;
当然为了兼容c,定义了对应的结构体,结构体中也有x,y两个属性,如果是c++,则在对应的宏中增加构造函数等定义
typedef struct CvPoint
{
int x;
int y;
#ifdef __cplusplus
CvPoint(int _x = 0, int _y = 0): x(_x), y(_y) {}
template<typename _Tp>
CvPoint(const cv::Point_<_Tp>& pt): x((int)pt.x), y((int)pt.y) {}
template<typename _Tp>
operator cv::Point_<_Tp>() const { return cv::Point_<_Tp>(cv::saturate_cast<_Tp>(x), cv::saturate_cast<_Tp>(y)); }
#endif
}
CvPoint;
浮点型的对应定义
typedef struct CvPoint2D32f
{
float x;
float y;
#ifdef __cplusplus
CvPoint2D32f(float _x = 0, float _y = 0): x(_x), y(_y) {}
template<typename _Tp>
CvPoint2D32f(const cv::Point_<_Tp>& pt): x((float)pt.x), y((float)pt.y) {}
template<typename _Tp>
operator cv::Point_<_Tp>() const { return cv::Point_<_Tp>(cv::saturate_cast<_Tp>(x), cv::saturate_cast<_Tp>(y)); }
#endif
}
CvPoint2D32f;
typedef struct CvPoint2D64f
{
double x;
double y;
}
CvPoint2D64f;
立体空间的坐标系,也就是具有z坐标的定义
typedef struct CvPoint3D32f
{
float x;
float y;
float z;
#ifdef __cplusplus
CvPoint3D32f(float _x = 0, float _y = 0, float _z = 0): x(_x), y(_y), z(_z) {}
template<typename _Tp>
CvPoint3D32f(const cv::Point3_<_Tp>& pt): x((float)pt.x), y((float)pt.y), z((float)pt.z) {}
template<typename _Tp>
operator cv::Point3_<_Tp>() const { return cv::Point3_<_Tp>(cv::saturate_cast<_Tp>(x), cv::saturate_cast<_Tp>(y), cv::saturate_cast<_Tp>(z)); }
#endif
}
CvPoint3D32f;
typedef struct CvPoint3D64f
{
double x;
double y;
double z;
}
CvPoint3D64f;
当然对应的c++中肯定是有这个类的
template<typename _Tp> class Point3_
{
public:
typedef _Tp value_type;
// various constructors
Point3_();
Point3_(_Tp _x, _Tp _y, _Tp _z);
Point3_(const Point3_& pt);
explicit Point3_(const Point_<_Tp>& pt);
Point3_(const Vec<_Tp, 3>& v);
Point3_& operator = (const Point3_& pt);
//! conversion to another data type
template<typename _Tp2> operator Point3_<_Tp2>() const;
//! conversion to cv::Vec<>
operator Vec<_Tp, 3>() const;
//! dot product
_Tp dot(const Point3_& pt) const;
//! dot product computed in double-precision arithmetics
double ddot(const Point3_& pt) const;
//! cross product of the 2 3D points
Point3_ cross(const Point3_& pt) const;
_Tp x, y, z; //< the point coordinates
};
同样用typedef定义了int,float,double类型
typedef Point3_<int> Point3i;
typedef Point3_<float> Point3f;
typedef Point3_<double> Point3d;
除了点,还有一个Size,里面有两个属性,width和height属性,内部结构和Point类的定义十分相似,还有对应的结构体CvSize
template<typename _Tp> class Size_
{
public:
typedef _Tp value_type;
//! various constructors
Size_();
Size_(_Tp _width, _Tp _height);
Size_(const Size_& sz);
Size_(const Point_<_Tp>& pt);
Size_& operator = (const Size_& sz);
//! the area (width*height)
_Tp area() const;
//! conversion of another data type.
template<typename _Tp2> operator Size_<_Tp2>() const;
_Tp width, height; // the width and the height
};
typedef Size_<int> Size2i;
typedef Size_<float> Size2f;
typedef Size_<double> Size2d;
typedef Size2i Size;
typedef struct CvSize
{
int width;
int height;
#ifdef __cplusplus
CvSize(int w = 0, int h = 0): width(w), height(h) {}
template<typename _Tp>
CvSize(const cv::Size_<_Tp>& sz): width(cv::saturate_cast<int>(sz.width)), height(cv::saturate_cast<int>(sz.height)) {}
template<typename _Tp>
operator cv::Size_<_Tp>() const { return cv::Size_<_Tp>(cv::saturate_cast<_Tp>(width), cv::saturate_cast<_Tp>(height)); }
#endif
}
CvSize;
typedef struct CvSize2D32f
{
float width;
float height;
#ifdef __cplusplus
CvSize2D32f(float w = 0, float h = 0): width(w), height(h) {}
template<typename _Tp>
CvSize2D32f(const cv::Size_<_Tp>& sz): width(cv::saturate_cast<float>(sz.width)), height(cv::saturate_cast<float>(sz.height)) {}
template<typename _Tp>
operator cv::Size_<_Tp>() const { return cv::Size_<_Tp>(cv::saturate_cast<_Tp>(width), cv::saturate_cast<_Tp>(height)); }
#endif
}
CvSize2D32f;
下面这个类基本上算具备了Point和Size的所有属性,可以认为它是一个矩形,一旦有矩形左上角的坐标,以及宽度和高度,就可以表示这个矩形了。
template<typename _Tp> class Rect_
{
public:
typedef _Tp value_type;
//! various constructors
Rect_();
Rect_(_Tp _x, _Tp _y, _Tp _width, _Tp _height);
Rect_(const Rect_& r);
Rect_(const Point_<_Tp>& org, const Size_<_Tp>& sz);
Rect_(const Point_<_Tp>& pt1, const Point_<_Tp>& pt2);
Rect_& operator = ( const Rect_& r );
//! the top-left corner
Point_<_Tp> tl() const;
//! the bottom-right corner
Point_<_Tp> br() const;
//! size (width, height) of the rectangle
Size_<_Tp> size() const;
//! area (width*height) of the rectangle
_Tp area() const;
//! conversion to another data type
template<typename _Tp2> operator Rect_<_Tp2>() const;
//! checks whether the rectangle contains the point
bool contains(const Point_<_Tp>& pt) const;
_Tp x, y, width, height; //< the top-left corner, as well as width and height of the rectangle
};
typedef Rect_<int> Rect2i;
typedef Rect_<float> Rect2f;
typedef Rect_<double> Rect2d;
typedef Rect2i Rect;
typedef struct CvRect
{
int x;
int y;
int width;
int height;
#ifdef __cplusplus
CvRect(int _x = 0, int _y = 0, int w = 0, int h = 0): x(_x), y(_y), width(w), height(h) {}
template<typename _Tp>
CvRect(const cv::Rect_<_Tp>& r): x(cv::saturate_cast<int>(r.x)), y(cv::saturate_cast<int>(r.y)), width(cv::saturate_cast<int>(r.width)), height(cv::saturate_cast<int>(r.height)) {}
template<typename _Tp>
operator cv::Rect_<_Tp>() const { return cv::Rect_<_Tp>((_Tp)x, (_Tp)y, (_Tp)width, (_Tp)height); }
#endif
}
CvRect;
Scalar_ 是一个四维向量,暂时你可以认为在使用颜色时,一个argb表示的颜色具有a,r,g,b四个值,刚好可以由Scalar_ 内部的四个属性表示
template<typename _Tp> class Scalar_ : public Vec<_Tp, 4>
{
public:
//! various constructors
Scalar_();
Scalar_(_Tp v0, _Tp v1, _Tp v2=0, _Tp v3=0);
Scalar_(_Tp v0);
template<typename _Tp2, int cn>
Scalar_(const Vec<_Tp2, cn>& v);
//! returns a scalar with all elements set to v0
static Scalar_<_Tp> all(_Tp v0);
//! conversion to another data type
template<typename T2> operator Scalar_<T2>() const;
//! per-element product
Scalar_<_Tp> mul(const Scalar_<_Tp>& a, double scale=1 ) const;
// returns (v0, -v1, -v2, -v3)
Scalar_<_Tp> conj() const;
// returns true iff v1 == v2 == v3 == 0
bool isReal() const;
};
用typedef定义了Scalar
typedef Scalar_<double> Scalar;
对应的结构体数据结构
typedef struct CvScalar
{
double val[4];
#ifdef __cplusplus
CvScalar() {}
CvScalar(double d0, double d1 = 0, double d2 = 0, double d3 = 0) { val[0] = d0; val[1] = d1; val[2] = d2; val[3] = d3; }
template<typename _Tp>
CvScalar(const cv::Scalar_<_Tp>& s) { val[0] = s.val[0]; val[1] = s.val[1]; val[2] = s.val[2]; val[3] = s.val[3]; }
template<typename _Tp>
operator cv::Scalar_<_Tp>() const { return cv::Scalar_<_Tp>(cv::saturate_cast<_Tp>(val[0]), cv::saturate_cast<_Tp>(val[1]), cv::saturate_cast<_Tp>(val[2]), cv::saturate_cast<_Tp>(val[3])); }
template<typename _Tp, int cn>
CvScalar(const cv::Vec<_Tp, cn>& v)
{
int i;
for( i = 0; i < (cn < 4 ? cn : 4); i++ ) val[i] = v.val[i];
for( ; i < 4; i++ ) val[i] = 0;
}
#endif
}
CvScalar;
Scalar类继承了Vec类,Vec被定义在opencv2/core/matx.hpp中,它表示向量
template<typename _Tp, int cn> class Vec : public Matx<_Tp, cn, 1>
{
public:
typedef _Tp value_type;
enum { depth = Matx<_Tp, cn, 1>::depth,
channels = cn,
type = CV_MAKETYPE(depth, channels)
};
//! default constructor
Vec();
Vec(_Tp v0); //!< 1-element vector constructor
Vec(_Tp v0, _Tp v1); //!< 2-element vector constructor
Vec(_Tp v0, _Tp v1, _Tp v2); //!< 3-element vector constructor
Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3); //!< 4-element vector constructor
Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4); //!< 5-element vector constructor
Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5); //!< 6-element vector constructor
Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6); //!< 7-element vector constructor
Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7); //!< 8-element vector constructor
Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8); //!< 9-element vector constructor
Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8, _Tp v9); //!< 10-element vector constructor
explicit Vec(const _Tp* values);
Vec(const Vec<_Tp, cn>& v);
static Vec all(_Tp alpha);
//! per-element multiplication
Vec mul(const Vec<_Tp, cn>& v) const;
//! conjugation (makes sense for complex numbers and quaternions)
Vec conj() const;
/*!
cross product of the two 3D vectors.
For other dimensionalities the exception is raised
*/
Vec cross(const Vec& v) const;
//! conversion to another data type
template<typename T2> operator Vec<T2, cn>() const;
/*! element access */
const _Tp& operator [](int i) const;
_Tp& operator[](int i);
const _Tp& operator ()(int i) const;
_Tp& operator ()(int i);
Vec(const Matx<_Tp, cn, 1>& a, const Matx<_Tp, cn, 1>& b, Matx_AddOp);
Vec(const Matx<_Tp, cn, 1>& a, const Matx<_Tp, cn, 1>& b, Matx_SubOp);
template<typename _T2> Vec(const Matx<_Tp, cn, 1>& a, _T2 alpha, Matx_ScaleOp);
};
用typedef定义了很多类型。。。
typedef Vec<uchar, 2> Vec2b;
typedef Vec<uchar, 3> Vec3b;
typedef Vec<uchar, 4> Vec4b;
typedef Vec<short, 2> Vec2s;
typedef Vec<short, 3> Vec3s;
typedef Vec<short, 4> Vec4s;
typedef Vec<ushort, 2> Vec2w;
typedef Vec<ushort, 3> Vec3w;
typedef Vec<ushort, 4> Vec4w;
typedef Vec<int, 2> Vec2i;
typedef Vec<int, 3> Vec3i;
typedef Vec<int, 4> Vec4i;
typedef Vec<int, 6> Vec6i;
typedef Vec<int, 8> Vec8i;
typedef Vec<float, 2> Vec2f;
typedef Vec<float, 3> Vec3f;
typedef Vec<float, 4> Vec4f;
typedef Vec<float, 6> Vec6f;
typedef Vec<double, 2> Vec2d;
typedef Vec<double, 3> Vec3d;
typedef Vec<double, 4> Vec4d;
typedef Vec<double, 6> Vec6d;
除了这些类之外,这几个头文件中还定义了很多其他的基本数据类型,有兴趣自行查看
版权声明:本文为博主原创文章,未经博主允许不得转载。
原文地址:http://blog.csdn.net/sbsujjbcy/article/details/49586575