标签:
MNIST数据库介绍:MNIST是一个手写数字数据库,它有60000个训练样本集和10000个测试样本集。它是NIST数据库的一个子集。
MNIST数据库官方网址为:http://yann.lecun.com/exdb/mnist/ ,也可以在windows下直接下载,train-images-idx3-ubyte.gz、train-labels-idx1-ubyte.gz等。下载四个文件,解压缩。解压缩后发现这些文件并不是标准的图像格式。这些图像数据都保存在二进制文件中。每个样本图像的宽高为28*28。
以下为将其转换成普通的jpg图像格式的代码:
#include <iostream> #include <fstream> #include "opencv2/core/core.hpp" #include "opencv2/highgui/highgui.hpp" #include "opencv2/imgproc/imgproc.hpp" using namespace std; int ReverseInt(int i) { unsigned char ch1, ch2, ch3, ch4; ch1 = i & 255; ch2 = (i >> 8) & 255; ch3 = (i >> 16) & 255; ch4 = (i >> 24) & 255; return((int) ch1 << 24) + ((int)ch2 << 16) + ((int)ch3 << 8) + ch4; } void read_Mnist(string filename, vector<cv::Mat> &vec) { ifstream file (filename, ios::binary); if (file.is_open()) { int magic_number = 0; int number_of_images = 0; int n_rows = 0; int n_cols = 0; file.read((char*) &magic_number, sizeof(magic_number)); magic_number = ReverseInt(magic_number); file.read((char*) &number_of_images,sizeof(number_of_images)); number_of_images = ReverseInt(number_of_images); file.read((char*) &n_rows, sizeof(n_rows)); n_rows = ReverseInt(n_rows); file.read((char*) &n_cols, sizeof(n_cols)); n_cols = ReverseInt(n_cols); for(int i = 0; i < number_of_images; ++i) { cv::Mat tp = cv::Mat::zeros(n_rows, n_cols, CV_8UC1); for(int r = 0; r < n_rows; ++r) { for(int c = 0; c < n_cols; ++c) { unsigned char temp = 0; file.read((char*) &temp, sizeof(temp)); tp.at<uchar>(r, c) = (int) temp; } } vec.push_back(tp); } } } void read_Mnist_Label(string filename, vector<int> &vec) { ifstream file (filename, ios::binary); if (file.is_open()) { int magic_number = 0; int number_of_images = 0; int n_rows = 0; int n_cols = 0; file.read((char*) &magic_number, sizeof(magic_number)); magic_number = ReverseInt(magic_number); file.read((char*) &number_of_images,sizeof(number_of_images)); number_of_images = ReverseInt(number_of_images); for(int i = 0; i < number_of_images; ++i) { unsigned char temp = 0; file.read((char*) &temp, sizeof(temp)); vec[i]= (int)temp; } } } string GetImageName(int number, int arr[]) { string str1, str2; for (int i = 0; i < 10; i++) { if (number == i) { arr[i]++; char ch1[10]; sprintf(ch1, "%d", arr[i]); str1 = std::string(ch1); if (arr[i] < 10) { str1 = "0000" + str1; } else if (arr[i] < 100) { str1 = "000" + str1; } else if (arr[i] < 1000) { str1 = "00" + str1; } else if (arr[i] < 10000) { str1 = "0" + str1; } break; } } char ch2[10]; sprintf(ch2, "%d", number); str2 = std::string(ch2); str2 = str2 + "_" + str1; return str2; } int main() { //reference: http://eric-yuan.me/cpp-read-mnist/ //test images and test labels //read MNIST image into OpenCV Mat vector string filename_test_images = "D:/Download/t10k-images-idx3-ubyte/t10k-images.idx3-ubyte"; int number_of_test_images = 10000; vector<cv::Mat> vec_test_images; read_Mnist(filename_test_images, vec_test_images); //read MNIST label into int vector string filename_test_labels = "D:/Download/t10k-labels-idx1-ubyte/t10k-labels.idx1-ubyte"; vector<int> vec_test_labels(number_of_test_images); read_Mnist_Label(filename_test_labels, vec_test_labels); if (vec_test_images.size() != vec_test_labels.size()) { cout<<"parse MNIST test file error"<<endl; return -1; } //save test images int count_digits[10]; for (int i = 0; i < 10; i++) count_digits[i] = 0; string save_test_images_path = "D:/Download/MNIST/test_images/"; for (int i = 0; i < vec_test_images.size(); i++) { int number = vec_test_labels[i]; string image_name = GetImageName(number, count_digits); image_name = save_test_images_path + image_name + ".jpg"; cv::imwrite(image_name, vec_test_images[i]); } //train images and train labels //read MNIST image into OpenCV Mat vector string filename_train_images = "D:/Download/train-images-idx3-ubyte/train-images.idx3-ubyte"; int number_of_train_images = 60000; vector<cv::Mat> vec_train_images; read_Mnist(filename_train_images, vec_train_images); //read MNIST label into int vector string filename_train_labels = "D:/Download/train-labels-idx1-ubyte/train-labels.idx1-ubyte"; vector<int> vec_train_labels(number_of_train_images); read_Mnist_Label(filename_train_labels, vec_train_labels); if (vec_train_images.size() != vec_train_labels.size()) { cout<<"parse MNIST train file error"<<endl; return -1; } //save train images for (int i = 0; i < 10; i++) count_digits[i] = 0; string save_train_images_path = "D:/Download/MNIST/train_images/"; for (int i = 0; i < vec_train_images.size(); i++) { int number = vec_train_labels[i]; string image_name = GetImageName(number, count_digits); image_name = save_train_images_path + image_name + ".jpg"; cv::imwrite(image_name, vec_train_images[i]); } return 0; }
版权声明:本文为博主原创文章,未经博主允许不得转载。
标签:
原文地址:http://blog.csdn.net/fengbingchun/article/details/49611549