标签:
最大连续区间和是一个经典的问题。给定一个长度为n的序列a[1],a[2]...a[n-1],a[n],求一个连续的子序列a[i],a[i+1]...a[j-1],a[j],使得a[i]+a[i+1]...a[j-1]+a[j]最大。
①最简单最容易想到的就是根据定义来枚举。
枚举上下界{i,j | 0<=i<=j<=n},维护一个max值即可。
其中枚举上下界的时间复杂度为O(n^2),求区间和的复杂度为O(n),所以总时间复杂度为O(n^3)。
②其实就是第一种方法的优化。
这里有个很容易想到的优化,即预处理出前缀和sum[i]=a[0]+a[1]+...+a[i-1]+a[i],算区间和的时候即可将求区间和的复杂度降到O(1),枚举上下界的复杂度不变,所以总时间复杂度为O(n^2)。
③可以利用动态规划的思维来继续优化,得到一个线性的算法,也是最大连续区间和的标准算法
定义maxn[i]为以i为结尾的最大连续和,则很容易找到递推关系:maxn[i]=max{0,maxn[i-1]}+a[i]。
所以只需要扫描一遍即可,总时间复杂度为O(n)。
④同样用到类似的思维。
首先也需要预处理出前缀和sum[i],可以推出ans=max{sum[i]-min{sum[j] } | 0<=j<i<=n }。
而最小前缀和可以动态维护,所以总时间复杂度为O(n)。
总结:虽然朴素的O(n^3)和前缀和优化的O(n^2)算法很容易想到,但代码实现却反而比方法三麻烦,第四个方法虽然有和方法三相同的复杂度,但需要一个预处理和多出的O(n)的空间,所以,方法三很好很强大。
标签:
原文地址:http://www.cnblogs.com/cdyboke/p/4975852.html