标签:
Flume是一个分布式、可靠、和高可用的海量日志聚合的系统,支持在系统中定制各类数据发送方,用于收集数据;同时,Flume提供对数据进行简单处理,并写到各种数据接受方(可定制)的能力。
(1) 可靠性
当节点出现故障时,日志能够被传送到其他节点上而不会丢失。Flume提供了三种级别的可靠性保障,从强到弱依次分别为:end-to-end(收到数据agent首先将event写到磁盘上,当数据传送成功后,再删除;如果数据发送失败,可以重新发送。),Store on failure(这也是scribe采用的策略,当数据接收方crash时,将数据写到本地,待恢复后,继续发送),Best effort(数据发送到接收方后,不会进行确认)。
(2) 可扩展性
Flume采用了三层架构,分别为agent,collector和storage,每一层均可以水平扩展。其中,所有agent和collector由master统一管理,这使得系统容易监控和维护,且master允许有多个(使用ZooKeeper进行管理和负载均衡),这就避免了单点故障问题。
(3) 可管理性
所有agent和colletor由master统一管理,这使得系统便于维护。多master情况,Flume利用ZooKeeper和gossip,保证动态配置数据的一致性。用户可以在master上查看各个数据源或者数据流执行情况,且可以对各个数据源配置和动态加载。Flume提供了web 和shell script command两种形式对数据流进行管理。
(4) 功能可扩展性
用户可以根据需要添加自己的agent,collector或者storage。此外,Flume自带了很多组件,包括各种agent(file, syslog等),collector和storage(file,HDFS等)。
flume的逻辑架构:
正如前面提到的,Flume采用了分层架构:分别为agent,collector和storage。其中,agent和collector均由两部分组成:source和sink,source是数据来源,sink是数据去向。
Flume使用两个组件:Master和Node,Node根据在Master shell或web中动态配置,决定其是作为Agent还是Collector。
agent的作用是将数据源的数据发送给collector。
Flume自带了很多直接可用的数据源(source),如:
更多可参见这位朋友的整理:http://www.cnblogs.com/zhangmiao-chp/archive/2011/05/18/2050465.html
同时提供了很多sink,如:
更多可参见这位朋友的整理:http://www.cnblogs.com/zhangmiao-chp/archive/2011/05/18/2050472.html
collector的作用是将多个agent的数据汇总后,加载到storage中。
它的source和sink与agent类似。
数据源(source),如:
sink,如:
storage是存储系统,可以是一个普通file,也可以是HDFS,HIVE,HBase,分布式存储等。
Master是管理协调agent和collector的配置等信息,是flume集群的控制器。
在Flume中,最重要的抽象是data flow(数据流),data flow描述了数据从产生,传输、处理并最终写入目标的一条路径。
注:Flume框架对hadoop和zookeeper的依赖只是在jar包上,并不要求flume启动时必须将hadoop和zookeeper服务也启动。
部署flume在集群上,按照如下步骤:
需要在集群的每台机器上部署Flume。
注意:flume集群整个集群的网络环境要保证稳定,可靠,否则会出现一些莫名错误(比如:agent端发送不了数据到collector)。
$wget http://cloud.github.com/downloads/cloudera/flume/flume-distribution-0.9.4-bin.tar.gz $tar -xzvf flume-distribution-0.9.4-bin.tar.gz $cp -rf flume-distribution-0.9.4-bin /usr/local/flume $vi /etc/profile #添加环境配置 export FLUME_HOME=/usr/local/flume export PATH=.:$PATH::$FLUME_HOME/bin $source /etc/profile $flume #验证安装
对于master的选择情况,可以在集群上定义一个master,也可以为了提高可用性选择多个节点做为master。
Flume master数量的选择原则:
分布式的master能够继续正常工作不会崩溃的前提是正常工作的master数量超过总master数量的一半。
Flume master 的作用主要有两个:
site-specific设置对于flume节点和master通过在每一个集群节点的conf/flume-site.xml是可配置的,如果这个文件不存在,设置的属性默认的在conf/flume-conf.xml中,在接下来的例子中,在flume的节点上设置master名,让节点自己去寻找叫“master”的flume Master。
<?xml version="1.0"?> <?xml-stylesheet type="text/xsl" href="configuration.xsl"?> <configuration> <property> <name>flume.master.servers</name> <value>master</value> </property> </configuration>
在多master的情况下需要如下配置:
<property> <name>flume.master.servers</name> <value>hadoopmaster.com,hadoopedge.com,datanode4.com</value> <description>A comma-separated list of hostnames, one for each machine in the Flume Master.</description> </property> <property> <name>flume.master.store</name> <value>zookeeper</value> <description>How the Flume Master stores node configurations. Must be either ‘zookeeper‘ or ‘memory‘.</description> </property> <property> <name>flume.master.serverid</name> <value>2</value> <description>The unique identifier for a machine in a Flume Master ensemble. Must be different on every master instance.</description> </property>
注意:flume.master.serverid 属性的配置主要是针对master,集群上Master节点的flume.master.serverid 必须是不能相同的,该属性的值以0开始。
当使用agent角色时,你可以通过添加下面的配置文件在flume-conf.xml中,来设置默认的collector主机:
<property> <name>flume.collector.event.host</name> <value>collector</value> <description>This is the host name of the default "remote" collector.</description> </property> <property> <name>flume.collector.port</name> <value>35853</value> <description>This default tcp port that the collector listens to in order to receive events it is collecting.</description> </property>
关于配置可参见:http://www.cnblogs.com/zhangmiao-chp/archive/2011/05/18/2050443.html。
集群上节点启动:
名字规则自己定义,方便记忆和动态配置即可(后续会有介绍动态配置)
关于flume shell 中的command参见:http://www.cnblogs.com/zhangmiao-chp/archive/2011/05/18/2050461.html
假设我们目前部署的Flume集群结构如下:
我们想将A-F所在的机器的系统日志收集到HDFS中,怎么样在flume shell中配置达到我们的目的呢?
1. 设置逻辑节点(logical node)
$flume shell >connect localhost >help >exec map 192.168.0.1 agentA >exec map 192.168.0.2 agentB >exec map 192.168.0.3 agentC >exec map 192.168.0.4 agentD >exec map 192.168.0.5 agentE >exec map 192.168.0.6 agentF >getnodestatus 192.168.0.1 --> IDLE 192.168.0.2 --> IDLE 192.168.0.3 --> IDLE 192.168.0.4 --> IDLE 192.168.0.5 --> IDLE 192.168.0.6 --> IDLE agentA --> IDLE agentB --> IDLE agentC --> IDLE agentD --> IDLE agentE --> IDLE agentF --> IDLE >exec map 192.168.0.11 collector
这里你也可以打开web master界面查看。
2.启动Collector的监听端口
>exec config collector ‘collectorSource(35853)‘ ‘collectorSink("","")‘#collector节点监听35853端口过来的数据,这一部非常重要
登陆到collector服务器进行端口检测
$netstat -nalp|grep 35853
如果在master中未进行上述配置,在collector上检测不到此打开端口
3.设置各节点的source和sink
>exec config collector ‘collectorSource(35853)‘ ‘collectorSink("hdfs://namenode/flume/","syslog")‘ >exec config agentA ‘tail("/tmp/log/message")‘ ‘agentBESink("192.168.0.11")‘ #经过实验,好像一个逻辑节点,最多只能有一个source和sink.
>...
>exec config agentF ‘tail("/tmp/log/message")‘ ‘agentBESink("192.168.0.11")‘
这时的配置情况可从master web中一目了然,此时已经可以达到我们最初的目的了。
以上通过flume shell进行的动态配置,在flume master web中都可以进行,在此不做进一步说明。
高级配置其实就是在上述简单配置中增加了以下几个特性来保证系统更好的运行:
多Master的情况在上面已经有过介绍,包括用途和master个数等。下面来简单看一下Collector Chain,其实也很简单,就是在动态配置时,使用agent*Chain来指定多个Collector来保证其日志传输的可用性。看一下一般正式环境中flume的逻辑图:
这里agentA和agentB指向collectorA,如果CollectorA crach了,根据配置的可靠性级别agent会有相应的动作,我们很可能为了保障高效传输而没有选择E2E(即使是这种方式,Agent本地日志累积过多依然是一个问题),一般会配置多个Collector,形成collector chain。
>exec config agentC ‘tail("/tmp/log/message")‘ ‘agentE2EChain("collectorB:35853","collectorA:35853")‘ >exec config agentD ‘tail("/tmp/log/message")‘ ‘agentE2EChain("collectorB:35853","collectorC:35853")‘
这样collectorB在出问题时:
上述节点有如下几类:master、agent、collector、storage,针对每类节点我们看一下高可用和有没有可能引起性能瓶颈问题。
首先,storage层的失败和collector层的失败是一样的,只要数据放不到最终的位置,就认为节点是失败的。我们一定会根据收集数据的可靠性设定合适的传输模式,而且会根据我们的配置,自己控制collector接收数据的情况,collector的性能影响的是整个flume集群的数据吞吐量,所以collector最好单独部署,所以一般不用考虑高可用问题。
然后,agent层的失败,Flume数据安全级别的配置主要Agent的配置上,Agent提供三种级别发送数据到collector:E2E、DFO、BF,在些不赘述。看一下一位大牛的总结:
agent节点监控日志文件夹下的所有文件,每一个agent最多监听1024个文件,每一个文件在agent的都会有一个类似游标的东西,记录监听文件读取的位置,这样每次文件有新的记录产生,那么游标就会读取增量记录,根据agent配置发送到collector的安全层级属性有E2E,DFO。
如果是E2E的情况那么agent节点会首先把文件写入到agent节点的文件夹下,然后发送给collector,如果最终数据最终成功存储到storage层,那么agent删除之前写入的文件,如果没有收到成功的信息,那么就保留信息。 如果agent节点出现问题,那么相当于所有的记录信息都消失了,如果直接重新启动,agent会认为日志文件夹下的所有文件都是没有监听过的,没有文件记录的标示,所以会重新读取文件,这样,日志就会有重复,具体恢复办法如下 将agent节点上监听的日志文件夹下已经发送的日志文件移出,处理完,故障重新启动agent即可。 注:在agent节点失败的情况下,按照失败的时间点,将时间点之前的数据文件移出,将flume.agent.logdir配置的文件夹清空,重新启动agent。
最后,master失败,master宕机,整个集群将不能工作,在重新启动集群,将agent监听的日志文件夹下的所有文件移出,然后重新启动master即可。在多master节点情况下,只要集群上正常工作的master大于总master数量的一半,集群就能正常工作,那么只要恢复其中宕机的master即可。
1.Flume在agent端采集数据的时候默认会在/tmp/flume-{user}下生成临时的目录用于存放agent自己截取的日志文件,如果文件过大导致磁盘写满那么agent端会报出 Error closing logicalNode a2-18 sink: No space left on device,所以在配置agent端的时候需要注意 <property> <name>flume.agent.logdir</name> <value>/data/tmp/flume-${user.name}/agent</value> </property> 属性,只要保证flume在7*24小时运行过程agent端不会使该路径flume.agent.logdir磁盘写满即可。
2. Flume在启动时候会去寻找hadoop-core-*.jar的文件,需要修改标准版的hadoop核心jar包的名字 将hadoop-*-core.jar改成hadoop-core-*.jar。
3.Flume集群中的flume必须版本一致。否则会出现莫名其妙的错误。
4.Flume集群收集的日志发送到hdfs上建立文件夹的时间依据是根据event的时间,在源代码上是Clock.unixTime(),所以如果想要根据日志生成的时间来生成文件的话,需要对 com.cloudera.flume.core.EventImpl 类的构造函数 public EventImpl(byte[] s, long timestamp, Priority pri, long nanoTime, String host, Map<String, byte[]> fields)重新写,解析数组s的内容取出时间,赋给timestamp。
注意:flume的框架会构造s内容是空的数组,用来发送类似简单验证的event,所以需要注意s内容为空的时候timestamp的问题。
5.如果collector和agent不在一个网段的话会发生闪断的现象,这样的话,就会造成agent端不能传送数据个collector所以,在部署agent和collector最好在一个网段。
6.如果在启动master时出现:“试着启动hostname,但是hostname不在master列表里的错误“,这是需要检查是否主机地址和hostname配置的正确与否。
7.在源端,有一个比较大的缺陷,在tail类的source,不支持,断点续传功能。因为重启node后没有记录上次文件读到的位置,从而没办法知道,下次再读时,从什么地方开始读。 特别是在日志文件一直在增加的时候。flume的source node挂了。等flume的source再次开启的这段时间内,增加的日志内容,就没办法被source读取到了。 不过flume有一个execStream的扩展,可以自己写一个监控日志增加情况,把增加的日志,通过自己写的工具把增加的内容,传送给flume的node。再传送给sink的node。
以前文章中介绍过Scribe方案,给我的最直观感受就是:
下面董的博客中的一副对比图:
本文介绍初次使用Flume传输数据到MongoDB的过程,内容涉及环境部署和注意事项。
1 环境搭建
需要jdk、flume-ng、mongodb java driver、flume-ng-mongodb-sink
(1)jdk下载地址:http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
(2)flune-ng下载地址:http://www.apache.org/dyn/closer.cgi/flume/1.5.2/apache-flume-1.5.2-bin.tar.gz
(3)mongodb java driver jar包下载地址:https://oss.sonatype.org/content/repositories/releases/org/mongodb/mongo-java-driver/2.13.0/mongo-java-driver-2.13.0.jar
(4)flume-ng-mongodb-sink 源码下载地址:https://github.com/leonlee/flume-ng-mongodb-sink
flume-ng-mongodb-sink 需要自己编译jar包,从github上下载代码,解压之后执行mvn package,即可生成。需要先安装maven用于编译jar包,且机器需要能联网。
2 简单原理介绍
这是一个关于池子的故事。有一个池子,它一头进水,另一头出水,进水口可以配置各种管子,出水口也可以配置各种管子,可以有多个进水口、多个出水口。水术语称为Event,进水口术语称为Source、出水口术语成为Sink、池子术语成为Channel,Source+Channel+Sink,术语称为Agent。如果有需要,还可以把多个Agent连起来。
更多细节参考官方文档:http://flume.apache.org/FlumeDeveloperGuide.html
3 Flume配置
(1) env配置
将mongo-java-driver和flume-ng-mongodb-sink两个jar包放到flume\lib目录下,并将路径加入到flume-env.sh文件的FLUME_CLASSPATH变量中;
JAVA_OPTS变量: 加上-Dflume.monitoring.type=http -Dflume.monitoring.port=xxxx,可以在[hostname:xxxx]/metrics 上看到监控信息; -Xms指定JVM初始内存,-Xmx指定JVM最大内存
FLUME_HOME变量: 设定FLUME根目录
JAVA_HOME变量: 设定JAVA根目录
(2) log配置
在调试时,将日志设置为debug并打到文件:flume.root.logger=DEBUG,LOGFILE
(3) 传输配置
采用 Exec Source、file-channel、flume-ng-mongodb-sink。
Source配置举例:
my_agent.sources.my_source_1.channels = my_channel_1 my_agent.sources.my_source_1.type = exec my_agent.sources.my_source_1.command = python xxx.py my_agent.sources.my_source_1.shell = /bin/bash -c my_agent.sources.my_source_1.restartThrottle = 10000 my_agent.sources.my_source_1.restart = true my_agent.sources.my_source_1.logStdErr = true my_agent.sources.my_source_1.batchSize = 1000 my_agent.sources.my_source_1.interceptors = i1 i2 i3 my_agent.sources.my_source_1.interceptors.i1.type = static my_agent.sources.my_source_1.interceptors.i1.key = db my_agent.sources.my_source_1.interceptors.i1.value = cswuyg_test my_agent.sources.my_source_1.interceptors.i2.type = static my_agent.sources.my_source_1.interceptors.i2.key = collection my_agent.sources.my_source_1.interceptors.i2.value = cswuyg_test my_agent.sources.my_source_1.interceptors.i3.type = static my_agent.sources.my_source_1.interceptors.i3.key = op my_agent.sources.my_source_1.interceptors.i3.value = upsert
字段说明:
采用exec source,指定执行命令行为python xxx.py,我在xxx.py代码中处理日志,并按照跟flume-ng-mongodb-sink的约定,print出json格式的数据,如果update类操作必须带着_id字段,print出来的日志被当作Event的Body,我再通过interceptors给它加上自定义Event Header;
static interceptors用于为Event Header添加信息,这里我为它加上了db=cswuyg_test、collection=cswuyg_test、op=upsert,这三个key是跟flume-ng-mongodb-sink 约定的,用于指定mongodb中的db、collection名以及操作类型为update。
Channel配置举例:
my_agent.channels.my_channel_1.type = file my_agent.channels.my_channel_1.checkpointDir = /home/work/flume/file-channel/my_channel_1/checkPoint my_agent.channels.my_channel_1.useDualCheckpoints = true my_agent.channels.my_channel_1.backupCheckpointDir = /home/work/flume/file-channel/my_channel_1/checkPoint2 my_agent.channels.my_channel_1.dataDirs = /home/work/flume/file-channel/my_channel_1/data my_agent.channels.my_channel_1.transactionCapacity = 10000 my_agent.channels.my_channel_1.checkpointInterval = 30000 my_agent.channels.my_channel_1.maxFileSize = 4292870142 my_agent.channels.my_channel_1.minimumRequiredSpace = 524288000 my_agent.channels.my_channel_1.capacity = 100000
字段说明:
要注意的参数是capacity,它指定了池子里可以存放的Event数量,需要根据日志量设置一个合适的值,如果你也采用file-channel,而且磁盘充足,那可以尽可能的设置得大些。
dataDirs指定池子存放的位置,如果可以,选择IO不是那么高的磁盘,可以使用逗号分隔使用多个磁盘目录。
sink配置举例:
my_agent.sinks.my_mongo_1.type = org.riderzen.flume.sink.MongoSink my_agent.sinks.my_mongo_1.host = xxxhost my_agent.sinks.my_mongo_1.port = yyyport my_agent.sinks.my_mongo_1.model = dynamic my_agent.sinks.my_mongo_1.batch = 10 my_agent.sinks.my_mongo_1.channel = my_channel_1 my_agent.sinks.my_mongo_1.timestampField = _S
字段说明:
model选择dynamic,表示mongodb的db、collection名字采用Event Header中指定的名字。timestampField 字段用于将json串中指定键的值转换为datetime格式存进mongodb,flume-ng-mongodb-sink不支持嵌套key指定(如:_S.y),但可以自己通过修改sink的代码来实现。
agent配置举例:
my_agent.channels = my_channel_1 my_agent.sources = my_source_1 my_agent.sinks = my_mongo_1
(4) 启动
可以写一个control.sh 脚本来控制flume的启动、关闭、重启。
启动demo:
./bin/flume-ng agent --conf ./conf/ --conf-file ./conf/flume.conf -n agent1 > ./start.log 2>&1 &
从此以后,日志数据就从日志文件,通过xxx.py读取,进入到flie-channel,再被flume-ng-mongodb-sink读走,进入到目的地MongoDB Cluster。
搭好基本功能之后,以后需要做的就是调整xxx.py、增强flume-ng-mongodb-sink。
4 其它
1、监控:官方推荐的监控是ganglia:http://sourceforge.net/projects/ganglia/,有图像界面。
2、版本变更:flume 从1.X开始已经不再使用ZooKeeper,在数据可靠性上,提供了E2E(end-to-end)的支持,去掉了重构之前的DFO(store on failure)、BE(best effort)。E2E指的是:在删除channel中的event时,保证event已经传递到了下一个agent或者终点,不过,这里没有提到数据在进入到channel之前如何保证不丢失,像Exec Source这种数据导入channel的方式,需要使用者自己保证。
3、关闭插件:使用Exec Source时,flume重启不会关闭掉旧插件进程,需要自己关闭。
4、Exec Source不能保证数据不丢失,因为这种方式只是把水灌到池子里,不管池子是什么状况, 参见https://flume.apache.org/FlumeUserGuide.html#exec-source 的 Warning 部分。但是,Spooling directory source 也不一定是个好方法,监控目录,但是注意不能修改文件的名字,不能出现同名覆盖文件,不要出现只有一半内容的文件。传输完成之后,文件会被重命名为xx.COMPLETED,需要有定时清理脚本把这些文件清理掉。重启会导致出现重复event,因为那些被传输到一半的文件没有被设置为完成状态。
5、传输瓶颈:使用flume+mongodb来安全传输大量数据(每秒万条级别的日志不算大数据量,每天几百G的也不算),瓶颈会出现在MongoDB上,特别是Update类型的数据传输。
6、需要修改当前的flume-ng-mongodb-sink 插件:(1)让update支持 $setOnInsert;(2)解决update的 $set、$inc为空时,引发exception的bug;(3)解决批量插入时,因其中一条日志有duplicate exception而导致同批插入的后续日志全部被丢弃的bug。
7、flume跟fluentd很类似,但来自hadoop生态的flume更热门,所以我选择flume。
8、批量部署:先把jdk、flume打包成tar,然后借助python 的 paramiko库,将tar包发到各台机器上,解压、运行。
本文所在:http://www.cnblogs.com/cswuyg/p/4498804.html
参考:
1、http://flume.apache.org/FlumeDeveloperGuide.html
2、《Apache Flume: Distributed Log Collection for Hadoop》
标签:
原文地址:http://www.cnblogs.com/duanxz/p/5002004.html