标签:
最大流模板题
大部分Edmond-Karp算法代码都是邻接矩阵实现,试着改成了邻接表。
#include <iostream> #include <cstdio> #include <queue> #include <cstring> using namespace std; // 裸最大流 const int N = 2005; const int M = 2005; const int INF = 0x7fffffff; // 邻接表 struct Edge { int from, to, next, cost; } edge[M]; int head[N]; int cnt_edge; void add_edge(int u, int v, int c) { edge[cnt_edge].to = v; edge[cnt_edge].from = u; edge[cnt_edge].cost = c; edge[cnt_edge].next = head[u]; head[u] = cnt_edge++; } int pre[N]; int flow[N]; queue<int> q; int bfs(int src, int des) { memset(pre, -1, sizeof pre); while (!q.empty()) q.pop(); q.push(src); flow[src] = INF; while (!q.empty()) { int u = q.front(); q.pop(); if (u == des) break; for (int i = head[u]; i != -1; i = edge[i].next) { int v = edge[i].to; int cost = edge[i].cost; if (pre[v] == -1 && cost > 0) { flow[v] = min(flow[u], cost); pre[v] = i; // 记录的是边 q.push(v); } } } if (pre[des] == -1) return -1; return flow[des]; } int maxFlow(int src, int des) { int ans = 0; int in; while ((in = bfs(src, des)) != -1) { int k = des; while (k != src) { int last = pre[k]; edge[last].cost -= in; edge[last ^ 1].cost += in; k = edge[last].from; } ans += in; } return ans; } int main() { int n, m; while (~scanf("%d%d", &m, &n)) { int a, b, c; memset(head, -1, sizeof head); while (m--) { scanf("%d%d%d", &a, &b, &c); add_edge(a, b, c); add_edge(b, a, 0); } printf("%d\n", maxFlow(1, n)); } }
另附邻接矩阵版
#include <iostream> #include <cstdio> #include <queue> #include <cstring> #define pk puts("kk"); using namespace std; // 裸最大流 const int N = 205; const int INF = 0x7fffffff; int cap[N][N]; int flow[N]; int pre[N]; queue<int> q; int n, m; int bfs(int src, int des) { while (!q.empty()) q.pop(); memset(pre, -1, sizeof pre); q.push(src); flow[src] = INF; while (!q.empty()) { int idx = q.front(); if (idx == des) break; q.pop(); for (int i = 1; i <= n; ++i) { if (pre[i] == -1 && cap[idx][i] > 0) { flow[i] = min(flow[idx], cap[idx][i]); pre[i] = idx; q.push(i); } } } if (pre[des] == -1) return -1; return flow[des]; } int maxFlow(int src, int des) { int ans = 0; int in; while ((in = bfs(src, des)) != -1) { int k = des; while (k != src) { int last = pre[k]; cap[last][k] -= in; cap[k][last] += in; k = last; } ans += in; } return ans; } int main() { while (~scanf("%d%d", &m, &n)) { int a, b, c; memset(cap, 0, sizeof cap); for (int i = 0; i < m; ++i) { scanf("%d%d%d", &a, &b, &c); cap[a][b] += c; } printf("%d\n", maxFlow(1, n)); } return 0; }
poj1273--Drainage Ditches(最大流Edmond-Karp算法 邻接表实现)
标签:
原文地址:http://www.cnblogs.com/wenruo/p/5013136.html