标签:
小知识点:
package cn.itcast.hadoop.mr.flowsort;
import java.io.IOException;
import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import cn.itcast.hadoop.mr.flowsum.FlowBean;
public class SortMR {
public static class SortMapper extends Mapper<LongWritable, Text, FlowBean, NullWritable>{
//拿到一行数据,切分出各字段,封装为一个flowbean,作为key输出
@Override
protected void map(LongWritable key, Text value,Context context)
throws IOException, InterruptedException {
String line = value.toString();
String[] fields = StringUtils.split(line, "\t");
String phoneNB = fields[0];
long u_flow = Long.parseLong(fields[1]);
long d_flow = Long.parseLong(fields[2]);
context.write(new FlowBean(phoneNB, u_flow, d_flow), NullWritable.get());
}
}
public static class SortReducer extends Reducer<FlowBean, NullWritable, Text, FlowBean>{
@Override
protected void reduce(FlowBean key, Iterable<NullWritable> values,Context context)
throws IOException, InterruptedException {
String phoneNB = key.getPhoneNB();
context.write(new Text(phoneNB), key);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
// main方法所在的类,此处表示自身的类
job.setJarByClass(SortMR.class);
//会代表map,reduce的output,如果不一样可以申明mapoutput类型,像下面的一样
job.setMapperClass(SortMapper.class);
job.setReducerClass(SortReducer.class);
// mapoutput类型
job.setMapOutputKeyClass(FlowBean.class);
job.setMapOutputValueClass(NullWritable.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(FlowBean.class);
//这两个参数正好是 hadoop jar 。。 最后两个参数
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
//标准输出
System.exit(job.waitForCompletion(true)?0:1);
}
}
package cn.itcast.hadoop.mr.areapartition;
import java.io.IOException;
import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.metrics2.impl.ConfigBuilder;
import cn.itcast.hadoop.mr.flowsum.FlowBean;
/**
* 对流量原始日志进行流量统计,将不同省份的用户统计结果输出到不同文件
* 需要自定义改造两个机制
* 1,改造分区的逻辑,自定义一个partitioneer
* 2,自定义reduer task的并发任务数
*/
public class FlowSumArea {
public static class FlowSumAreaMapper extends Mapper<LongWritable, Text, Text, FlowBean>{
@Override
protected void map(LongWritable key, Text value,Context context)
throws IOException, InterruptedException {
//拿一行数据
String line = value.toString();
//切分成各个字段
String[] fields = StringUtils.split(line,"\t");
//拿到我们的字段
String phoneNB = fields[1];
long u_flow = Long.parseLong(fields[7]);
long d_flow = Long.parseLong(fields[8]);
//封装数据为kv并输出
context.write(new Text(phoneNB), new FlowBean(phoneNB,u_flow,d_flow));
}
}
public static class FlowSumAreaReducer extends Reducer<Text, FlowBean, Text, FlowBean>{
@Override
protected void reduce(Text key, Iterable<FlowBean> values,Context context)
throws IOException, InterruptedException {
long up_flow_counter = 0;
long d_flow_counter = 0;
for (FlowBean bean : values) {
up_flow_counter +=bean.getUp_flow();
d_flow_counter += bean.getD_flow();
}
context.write(key, new FlowBean(key.toString(),up_flow_counter,d_flow_counter));
}
}
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
job.setJarByClass(FlowSumArea.class);
//job.setMapperClass(FlowSumAreaMapper.class);
job.setMapperClass(FlowSumAreaMapper.class);
job.setReducerClass(FlowSumAreaReducer.class);
//设置我们自定义的分组逻辑定义
job.setPartitionerClass(AreaPartitioner.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(FlowBean.class);
//设置reduce的任务并发数,应该跟分组的数量保持一致
job.setNumReduceTasks(6);
//进程数如果大了,后面的文件为空,小了会出现错误,为1则没有分组
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true)?0:1);
}
}
package cn.itcast.hadoop.mr.areapartition;
import java.util.HashMap;
import org.apache.hadoop.mapreduce.Partitioner;
public class AreaPartitioner<KEY, VALUE> extends Partitioner<KEY, VALUE> {
private static HashMap<String,Integer> areaMap = new HashMap<>();
static{
areaMap.put("135", 0);
areaMap.put("136", 1);
areaMap.put("137", 2);
areaMap.put("138", 3);
areaMap.put("139", 4);
}
@Override
public int getPartition(KEY key, VALUE value, int numPartitions) {
//从key中拿到手机号,查询手机归属地字典,不同省份返回不同的组号
int areaCoder = areaMap.get(key.toString().substring(0,3))==null?5:areaMap.get(key.toString().substring(0,3));
return areaCoder;
}
}
流量汇总(自定义jar包,在hadoop集群上 统计,排序,分组)之统计
标签:
原文地址:http://www.cnblogs.com/xiaoxiao5ya/p/c23cd7c85104ae4bc5875c798d81fb2e.html