标签:
/*
好久没有做有关图论的题了,复习一下。
---------------------------------------------------------
任意两点间的最短路(Floyd-Warshall算法)
动态规划:
dp[k][i][j] := 节点i可以通过编号1,2...k的节点到达j节点的最短路径。
使用1,2...k的节点,可以分为以下两种情况来讨论:
(1)i到j的最短路正好经过节点k一次
dp[k-1][i][k] + dp[k-1][k][j]
(2)i到j的最短路完全不经过节点k
dp[k-1][i][j]
故:dp[k][i][j] = min(dp[k-1][i][k] + dp[k-1][k][j], dp[k-1][i][j])
空间可优化:dp[i][j] = min(dp[i][k] + dp[k][j], dp[i][j])
初始值:
dp[0][i][j] = 0 (i == j)
dp[0][i][j] := 边i->j的权值
如果i和j之间不存在边,dp[i][j] = INF (0x3f3f3f3f)
时间复杂度:O(|V|^3)
可以处理边是负数的情况,判断图中是否有负圈,只需检查是否存在dp[i][i]是负数的顶点i就可以了。
---------------------------------------------------------------------------------
poj 2253 Frogger
对于此题,求的是:
To execute a given sequence of jumps, a frog‘s jump range obviously must be at least
as long as the longest jump occuring in the sequence.
The frog distance (humans also call it minimax distance) between two stones therefore is defined as
the minimum necessary jump range over all possible paths between the two stones.
即:一条路径中需要跳跃很多次,但存在一次跳跃在所有跳跃中需要跳的距离最长,这个距离即可称为这条路径中需要跳跃的最长距离,
找出A石头到达B石头所有路径的需要跳跃的最长距离,其中最短的最长距离即为答案,即:The frog distance。
Floyd-Warshall算法会遍历到i->j所有的路径,所以我们可以改变dp状态,解决此问题:
dp[k][i][j] := 节点i可以通过编号1,2...k的节点到达j节点的路径中,需要跳跃的最短的最长距离。
故:
dp[k][i][j] = min(dp[k-1][i][j], max(dp[k-1][i][k], dp[k-1][k][j]))
优化一下:
dp[i][j] := min(dp[i][j], max(dp[i][k], dp[k][j]))
初始值:
dp[0][i][j] := 从节点i到节点j的距离。
*/
1 #include <iostream> 2 #include <cstdlib> 3 #include <cstdio> 4 #include <cstddef> 5 #include <iterator> 6 #include <algorithm> 7 #include <string> 8 #include <locale> 9 #include <cmath> 10 #include <vector> 11 #include <cstring> 12 #include <map> 13 #include <utility> 14 #include <queue> 15 #include <stack> 16 #include <set> 17 using namespace std; 18 const int INF = 0x3f3f3f3f; 19 const int MaxN = 205; 20 const int modPrime = 3046721; 21 22 struct Node 23 { 24 double x, y; 25 }; 26 27 int n; 28 Node nodeSet[MaxN]; 29 double dp[MaxN][MaxN]; 30 double dis[MaxN][MaxN]; 31 32 void getDistance() 33 { 34 for (int i = 1; i <= n; ++i) 35 { 36 for (int j = 1; j <= n; ++j) 37 { 38 if (i != j) 39 { 40 dis[i][j] = sqrt((nodeSet[i].x - nodeSet[j].x)*(nodeSet[i].x - nodeSet[j].x) + 41 (nodeSet[i].y - nodeSet[j].y)*(nodeSet[i].y - nodeSet[j].y)); 42 dis[j][i] = dis[i][j]; 43 } 44 else 45 { 46 dis[i][j] = 0.0; 47 } 48 } 49 } 50 } 51 52 void Solve() 53 { 54 for (int i = 1; i <= n; ++i) 55 { 56 for (int j = 1; j <= n; ++j) 57 { 58 dp[i][j] = dis[i][j]; 59 } 60 } 61 for (int k = 1; k <= n; ++k) 62 { 63 for (int i = 1; i <= n; ++i) 64 { 65 for (int j = 1; j <= n; ++j) 66 { 67 dp[i][j] = min(dp[i][j], max(dp[i][k], dp[k][j])); 68 } 69 } 70 } 71 printf("Frog Distance = %.3lf\n\n", dp[1][2]); 72 73 } 74 75 int main() 76 { 77 #ifdef HOME 78 freopen("in", "r", stdin); 79 //freopen("out", "w", stdout); 80 #endif 81 82 int num = 1; 83 while (~scanf("%d", &n) && n) 84 { 85 for (int i = 1; i <= n; ++i) 86 { 87 scanf("%lf %lf", &nodeSet[i].x, &nodeSet[i].y); 88 } 89 getDistance(); 90 printf("Scenario #%d\n", num); 91 Solve(); 92 ++num; 93 } 94 95 96 #ifdef HOME 97 cerr << "Time elapsed: " << clock() / CLOCKS_PER_SEC << " ms" << endl; 98 _CrtDumpMemoryLeaks(); 99 #endif 100 return 0; 101 }
Floyd-Warshall算法(求解任意两点间的最短路) 详解 + 变形 之 poj 2253 Frogger
标签:
原文地址:http://www.cnblogs.com/shijianming/p/5024111.html