标签:
Reduce之后直接进行结果合并
程序名:Sort.java
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.Partitioner;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class Sort {
//map将输入中的value化成IntWritable类型作为输出的key
public static class Map extends
Mapper<Object, Text, IntWritable, IntWritable> {
private static IntWritable data = new IntWritable();
//实现map函数
public void map(Object key, Text value, Context context)
throws IOException, InterruptedException {
String line = value.toString();
data.set(Integer.parseInt(line));
context.write(data, new IntWritable(1));
}
}
/*reduce将输入中的key复制到输出数据的key上,
然后根据输入的value-list中的元素的个数决定key的输出次数,
用全局linenum来代表key的位次*/
public static class Reduce extends
Reducer<IntWritable, IntWritable, IntWritable, IntWritable> {
private static IntWritable linenum = new IntWritable(1);
//实现reduce函数
public void reduce(IntWritable key, Iterable<IntWritable> values,
Context context) throws IOException, InterruptedException {
for (IntWritable val : values) {
context.write(linenum, key);
linenum = new IntWritable(linenum.get() + 1);
}
}
}
public static class Partition extends Partitioner<IntWritable, IntWritable> {
@Override
public int getPartition(IntWritable key, IntWritable value,
int numPartitions) {
int MaxNumber = 65223;
int bound = MaxNumber / numPartitions + 1;
int keynumber = key.get();
for (int i = 0; i < numPartitions; i++) {
if (keynumber < bound * i && keynumber >= bound * (i - 1))
return i - 1;
}
return 0;
}
}
/**
* @param args
*/
public static void main(String[] args) throws Exception {
// TODO Auto-generated method stub
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args)
.getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println("Usage WordCount <int> <out>");
System.exit(2);
}
Job job = new Job(conf, "Sort");
job.setJarByClass(Sort.class);
//设置map和reduce处理类
job.setMapperClass(Map.class);
job.setPartitionerClass(Partition.class);
job.setReducerClass(Reduce.class);
job.setOutputKeyClass(IntWritable.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
hadoop笔记之MapReduce的应用案例(利用MapReduce进行排序)
标签:
原文地址:http://www.cnblogs.com/XBlack/p/5024106.html