码迷,mamicode.com
首页 > Web开发 > 详细

机器学习公开课笔记(4):神经网络(Neural Network)——表示

时间:2015-12-24 00:26:50      阅读:303      评论:0      收藏:0      [点我收藏+]

标签:

动机(Motivation)

对于非线性分类问题,如果用多元线性回归进行分类,需要构造许多高次项,导致特征特多学习参数过多,从而复杂度太高。

神经网络(Neural Network)

一个简单的神经网络如下图所示,每一个圆圈表示一个神经元,每个神经元接收上一层神经元的输出作为其输入,同时其输出信号到下一层,其中每一层的第一个神经元称为bias unit,它是额外加入的其值为1,通常用+1表示,下图用虚线画出。

技术分享

 

符号说明:

  • $a_i^{(j)}$表示第j层网络的第i个神经元,例如下图$a_1^{(2)}$就表示第二层的第一个神经元
  • $\theta^{(j)}$表示从第$j$层到第$j+1$层的权重矩阵,例如下图所有的$\theta^{(1)}$表示从第一层到第二层的权重矩阵
  • $\theta^{(j)}_{uv}$表示从第j层的第v个神经元到第j+1层的第u个神经的权重,例如下图中$\theta^{(1)}_{23}$表示从第一层的第3个神经元到第二层的第2个神经元的权重,需要注意到的是下标uv是指v->u的权重而不是u->v,下图也给出了第一层到第二层的所有权重标注
  • 一般地,如果第j层有$s_j$个神经元(不包括bias神经元),第j+1层有$s_{j+1}$个神经元(也不包括bias神经元),那么权重矩阵$\theta^{j}$的维度是$(s_{j+1}\times s_j+1)$

前向传播(Forward Propagration, FP)

后一层的神经元的值根据前一层神经元的值的改变而改变,以上图为例,第二层的神经元的更新方式为

$$a_1^{(2)} = g(\theta_{10}^{(1)}x_0 + \theta_{11}^{(1)}x_1 + \theta_{12}^{(1)}x_2 + \theta_{13}^{(1)}x_3)$$

$$a_2^{(2)} = g(\theta_{20}^{(1)}x_0 + \theta_{21}^{(1)}x_1 + \theta_{22}^{(1)}x_2 + \theta_{23}^{(1)}x_3)$$

$$a_3^{(2)} = g(\theta_{30}^{(1)}x_0 + \theta_{31}^{(1)}x_1 + \theta_{32}^{(1)}x_2 + \theta_{33}^{(1)}x_3)$$

$$a_4^{(2)} = g(\theta_{40}^{(1)}x_0 + \theta_{41}^{(1)}x_1 + \theta_{42}^{(1)}x_2 + \theta_{43}^{(1)}x_3)$$

其中g(z)为sigmoid函数,即$g(z)=\frac{1}{1+e^{-z}}$

1. 向量化实现(Vectorized Implementation)

如果我们以向量角度来看待上述的更新公式,定义

$a^{(1)}=x=\left[ \begin{matrix}x_0\\ x_1 \\ x_2 \\ x_3 \end{matrix} \right]$    $z^{(2)}=\left[ \begin{matrix}z_1^{(2)}\\ z_1^{(2)} \\ z_1^{(2)}\end{matrix} \right]$    $\theta^{(1)}=\left[\begin{matrix}\theta^{(1)}_{10}& \theta^{(1)}_{11}& \theta^{(1)}_{12}& \theta^{(1)}_{13}\\ \theta^{(1)}_{20}& \theta^{(1)}_{21}& \theta^{(1)}_{22}& \theta^{(1)}_{23}\\ \theta^{(1)}_{30}& \theta^{(1)}_{31}& \theta^{(1)}_{32} & \theta^{(1)}_{33}\end{matrix}\right]$

则更新公式可以简化为

$$z^{(2)}=\theta^{(1)}a^{(1)}$$

$$a^{(2)}=g(z^{(2)})$$

$$z^{(3)}=\theta^{(2)}a^{(2)}$$

$$a^{(3)}=g(z^{(3)})=h_\theta(x)$$

可以看到,我们由第一层的值,计算第二层的值;由第二层的值,计算第三层的值,得到预测的输出,计算的方式一层一层往前走的,这也是前向传播的名称由来。

2. 与Logistic回归的联系

技术分享

考虑上图没有隐藏层的神经网络,其中$x=\left[ \begin{matrix}x_0\\ x_1 \\ x_2 \\ x_3 \end{matrix} \right]$,$\theta=\left[ \begin{matrix}\theta_0& \theta_1& \theta_2 & \theta_3 \end{matrix} \right]$,则我们有$h_\theta(x)=a_1^{(2)}=g(z^{(1)})=g(\theta x)=g(x_0\theta_0+x_1\theta_1+x_2\theta_2+x_3\theta_3)$,可以看到这正是Logistic回归的假设函数!!!这种关系表明Logistic是回归是不含隐藏层的特殊神经网络,神经网络从某种程度上来说是对logistic回归的推广。

神经网络示例

对于如下图所示的线性不可分的分类问题,(0,0)(1,1)为一类(0,1)(1,0)为另一类,神经网络可以解决(见5)。首先需要一些简单的神经网络(1-4),其中图和真值表结合可以清楚的看出其功能,不再赘述。

技术分享

1. 实现AND操作

技术分享

2. 实现OR操作

技术分享

3. 实现非操作

技术分享

4. 实现NAND=((not x1) and (not x2))操作

技术分享

5. 组合实现NXOR=NOT(x1 XOR x2) 操作 

该神经网络用到了之前的AND操作(用红色表示)、NAND操作(用青色表示)和OR操作(用橙色表示),从真值表可以看出,该神经网络成功地将(0, 0)(1,1)分为一类,(1,0)(0,1)分为一类,很好解决了线性不可分的问题。

技术分享

神经网络的代价函数(含正则项)

$$J(\Theta) = -\frac{1}{m}\left[\sum\limits_{i=1}^{m}\sum\limits_{k=1}^{K}y^{(i)}_{k}log(h_\theta(x^{(i)}))_k + (1-y^{(i)}_k)log(1-(h_\theta(x^{(i)}))_k)\right] + \frac{\lambda}{2m}\sum_{l=1}^{L-1}\sum\limits_{i=1}^{s_l}\sum\limits_{j=1}^{s_{l+1}}(\Theta_{ji}^{(l)})^2$$

符号说明:

  • $m$ — 训练example的数量
  • $K$  — 最后一层(输出层)的神经元的个数,也等于分类数(分$K$类,$K\geq 3$)
  • $y_k^{(i)}$ — 第$i$个训练exmaple的输出(长度为$K$个向量)的第$k$个分量值
  • $(h_\theta(x^{(i)}))_k$ — 对第$i$个example用神经网络预测的输出(长度为$K$的向量)的第$k$个分量值
  • $L$ — 神经网络总共的层数(包括输入层和输出层)
  • $\Theta^{(l)}$ — 第$l$层到第$l+1$层的权重矩阵
  • $s_l$ — 第$l$层神经元的个数, 注意$i$从1开始计数,bias神经元的权重不算在正则项内
  • $s_{l+1}$ — 第$l+1$ 层神经元的个数

参考文献

 [1] Andrew Ng Coursera 公开课第四周

 [2] Neural Networks. https://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html

 [3] The nature of code. http://natureofcode.com/book/chapter-10-neural-networks/

 [4] A Basic Introduction To Neural Networks. http://pages.cs.wisc.edu/~bolo/shipyard/neural/local.html

机器学习公开课笔记(4):神经网络(Neural Network)——表示

标签:

原文地址:http://www.cnblogs.com/python27/p/MachineLearningWeek04.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!