码迷,mamicode.com
首页 > 数据库 > 详细

Spark修炼之道(进阶篇)——Spark入门到精通:第九节 Spark SQL运行流程解析

时间:2015-12-31 12:53:47      阅读:970      评论:0      收藏:0      [点我收藏+]

标签:

1.整体运行流程

使用下列代码对SparkSQL流程进行分析,让大家明白LogicalPlan的几种状态,理解SparkSQL整体执行流程

// sc is an existing SparkContext.
val sqlContext = new org.apache.spark.sql.SQLContext(sc)
// this is used to implicitly convert an RDD to a DataFrame.
import sqlContext.implicits._

// Define the schema using a case class.
// Note: Case classes in Scala 2.10 can support only up to 22 fields. To work around this limit,
// you can use custom classes that implement the Product interface.
case class Person(name: String, age: Int)

// Create an RDD of Person objects and register it as a table.
val people = sc.textFile("/examples/src/main/resources/people.txt").map(_.split(",")).map(p => Person(p(0), p(1).trim.toInt)).toDF()
people.registerTempTable("people")

// SQL statements can be run by using the sql methods provided by sqlContext.
val teenagers = sqlContext.sql("SELECT name, age FROM people WHERE age >= 13 AND age <= 19")

(1)查看teenagers的Schema信息

scala> teenagers.printSchema
root
 |-- name: string (nullable = true)
 |-- age: integer (nullable = false)

(2)查看运行流程

scala> teenagers.queryExecution
res3: org.apache.spark.sql.SQLContext#QueryExecution =
== Parsed Logical Plan ==
‘Project [unresolvedalias(‘name),unresolvedalias(‘age)]
 ‘Filter ((‘age >= 13) && (‘age <= 19))
  ‘UnresolvedRelation [people], None

== Analyzed Logical Plan ==
name: string, age: int
Project [name#0,age#1]
 Filter ((age#1 >= 13) && (age#1 <= 19))
  Subquery people
   LogicalRDD [name#0,age#1], MapPartitionsRDD[4] at rddToDataFrameHolder at <console>:22

== Optimized Logical Plan ==
Filter ((age#1 >= 13) && (age#1 <= 19))
 LogicalRDD [name#0,age#1], MapPartitionsRDD[4] at rddToDataFrameHolder at <console>:22

== Physical Plan ==
Filter ((age#1 >= 13) && (age#1 <= 19))
 Scan PhysicalRDD[name#0,age#1]

Code Generation: true

QueryExecution中表示的是整体Spark SQL运行流程,从上面的输出结果可以看到,一个SQL语句要执行需要经过下列步骤:

== (1)Parsed Logical Plan ==
‘Project [unresolvedalias(‘name),unresolvedalias(‘age)]
 ‘Filter ((‘age >= 13) && (‘age <= 19))
  ‘UnresolvedRelation [people], None

== (2)Analyzed Logical Plan ==
name: string, age: int
Project [name#0,age#1]
 Filter ((age#1 >= 13) && (age#1 <= 19))
  Subquery people
   LogicalRDD [name#0,age#1], MapPartitionsRDD[4] at rddToDataFrameHolder at <console>:22

== (3)Optimized Logical Plan ==
Filter ((age#1 >= 13) && (age#1 <= 19))
 LogicalRDD [name#0,age#1], MapPartitionsRDD[4] at rddToDataFrameHolder at <console>:22

== (4)Physical Plan ==
Filter ((age#1 >= 13) && (age#1 <= 19))
 Scan PhysicalRDD[name#0,age#1]

//启动动态字节码生成技术(bytecode generation,CG),提升查询效率
Code Generation: true

2.全表查询运行流程

执行语句:

val all= sqlContext.sql("SELECT * FROM people")

运行流程:

scala> all.queryExecution
res9: org.apache.spark.sql.SQLContext#QueryExecution =
//注意*号被解析为unresolvedalias(*)
== Parsed Logical Plan ==
‘Project [unresolvedalias(*)]
 ‘UnresolvedRelation [people], None

== Analyzed Logical Plan ==
//unresolvedalias(*)被analyzed为Schema中所有的字段
//UnresolvedRelation [people]被analyzed为Subquery people
name: string, age: int
Project [name#0,age#1]
 Subquery people
  LogicalRDD [name#0,age#1], MapPartitionsRDD[4] at rddToDataFrameHolder at <console>:22

== Optimized Logical Plan ==
LogicalRDD [name#0,age#1], MapPartitionsRDD[4] at rddToDataFrameHolder at <console>:22

== Physical Plan ==
Scan PhysicalRDD[name#0,age#1]

Code Generation: true

3. filter查询运行流程

执行语句:

scala> val filterQuery= sqlContext.sql("SELECT * FROM people WHERE age >= 13 AND age <= 19")
filterQuery: org.apache.spark.sql.DataFrame = [name: string, age: int]

执行流程:

scala> filterQuery.queryExecution
res0: org.apache.spark.sql.SQLContext#QueryExecution =
== Parsed Logical Plan ==
‘Project [unresolvedalias(*)]
 ‘Filter ((‘age >= 13) && (‘age <= 19))
  ‘UnresolvedRelation [people], None

== Analyzed Logical Plan ==
name: string, age: int
Project [name#0,age#1]
 //多出了Filter,后同
 Filter ((age#1 >= 13) && (age#1 <= 19))
  Subquery people
   LogicalRDD [name#0,age#1], MapPartitionsRDD[4] at rddToDataFrameHolder at <console>:20

== Optimized Logical Plan ==
Filter ((age#1 >= 13) && (age#1 <= 19))
 LogicalRDD [name#0,age#1], MapPartitionsRDD[4] at rddToDataFrameHolder at <console>:20

== Physical Plan ==
Filter ((age#1 >= 13) && (age#1 <= 19))
 Scan PhysicalRDD[name#0,age#1]

Code Generation: true

4. join查询运行流程

执行语句:

val joinQuery= sqlContext.sql("SELECT * FROM people a, people b where a.age=b.age")

查看整体执行流程

scala> joinQuery.queryExecution
res0: org.apache.spark.sql.SQLContext#QueryExecution =
//注意Filter
//Join Inner
== Parsed Logical Plan ==
‘Project [unresolvedalias(*)]
 ‘Filter (‘a.age = ‘b.age)
  ‘Join Inner, None
   ‘UnresolvedRelation [people], Some(a)
   ‘UnresolvedRelation [people], Some(b)

== Analyzed Logical Plan ==
name: string, age: int, name: string, age: int
Project [name#0,age#1,name#2,age#3]
 Filter (age#1 = age#3)
  Join Inner, None
   Subquery a
    Subquery people
     LogicalRDD [name#0,age#1], MapPartitionsRDD[4] at rddToDataFrameHolder at <console>:22
   Subquery b
    Subquery people
     LogicalRDD [name#2,age#3], MapPartitionsRDD[4] at rddToDataFrameHolder at <console>:22

== Optimized Logical Plan ==
Project [name#0,age#1,name#2,age#3]
 Join Inner, Some((age#1 = age#3))
  LogicalRDD [name#0,age#1], MapPartitionsRDD[4]...

//查看其Physical Plan
scala> joinQuery.queryExecution.sparkPlan
res16: org.apache.spark.sql.execution.SparkPlan =
TungstenProject [name#0,age#1,name#2,age#3]
 SortMergeJoin [age#1], [age#3]
  Scan PhysicalRDD[name#0,age#1]
  Scan PhysicalRDD[name#2,age#3]

前面的例子与下面的例子等同,只不过其运行方式略有不同,执行语句:

scala> val innerQuery= sqlContext.sql("SELECT * FROM people a inner join people b on a.age=b.age")
innerQuery: org.apache.spark.sql.DataFrame = [name: string, age: int, name: string, age: int]

查看整体执行流程:

scala> innerQuery.queryExecution
res2: org.apache.spark.sql.SQLContext#QueryExecution =
//注意Join Inner
//另外这里面没有Filter
== Parsed Logical Plan ==
‘Project [unresolvedalias(*)]
 ‘Join Inner, Some((‘a.age = ‘b.age))
  ‘UnresolvedRelation [people], Some(a)
  ‘UnresolvedRelation [people], Some(b)

== Analyzed Logical Plan ==
name: string, age: int, name: string, age: int
Project [name#0,age#1,name#4,age#5]
 Join Inner, Some((age#1 = age#5))
  Subquery a
   Subquery people
    LogicalRDD [name#0,age#1], MapPartitionsRDD[4] at rddToDataFrameHolder at <console>:22
  Subquery b
   Subquery people
    LogicalRDD [name#4,age#5], MapPartitionsRDD[4] at rddToDataFrameHolder at <console>:22

//注意Optimized Logical Plan与Analyzed Logical Plan
//并没有进行特别的优化,突出这一点是为了比较后面的子查询
//其Analyzed和Optimized间的区别
== Optimized Logical Plan ==
Project [name#0,age#1,name#4,age#5]
 Join Inner, Some((age#1 = age#5))
  LogicalRDD [name#0,age#1], MapPartitionsRDD[4] at rddToDataFrameHolder ...

//查看其Physical Plan
scala> innerQuery.queryExecution.sparkPlan
res14: org.apache.spark.sql.execution.SparkPlan =
TungstenProject [name#0,age#1,name#6,age#7]
 SortMergeJoin [age#1], [age#7]
  Scan PhysicalRDD[name#0,age#1]
  Scan PhysicalRDD[name#6,age#7]

5. 子查询运行流程

执行语句:

scala> val subQuery=sqlContext.sql("SELECT * FROM (SELECT * FROM people WHERE age >= 13)a where a.age <= 19")
subQuery: org.apache.spark.sql.DataFrame = [name: string, age: int]

查看整体执行流程:


scala> subQuery.queryExecution
res4: org.apache.spark.sql.SQLContext#QueryExecution =
== Parsed Logical Plan ==
‘Project [unresolvedalias(*)]
 ‘Filter (‘a.age <= 19)
  ‘Subquery a
   ‘Project [unresolvedalias(*)]
    ‘Filter (‘age >= 13)
     ‘UnresolvedRelation [people], None

== Analyzed Logical Plan ==
name: string, age: int
Project [name#0,age#1]
 Filter (age#1 <= 19)
  Subquery a
   Project [name#0,age#1]
    Filter (age#1 >= 13)
     Subquery people
      LogicalRDD [name#0,age#1], MapPartitionsRDD[4] at rddToDataFrameHolder at <console>:22

//这里需要注意Optimized与Analyzed间的区别
//Filter被进行了优化
== Optimized Logical Plan ==
Filter ((age#1 >= 13) && (age#1 <= 19))
 LogicalRDD [name#0,age#1], MapPartitionsRDD[4] at rddToDataFrameHolder at <console>:22

== Physical Plan ==
Filter ((age#1 >= 13) && (age#1 <= 19))
 Scan PhysicalRDD[name#0,age#1]

Code Generation: true

6. 聚合SQL运行流程

执行语句:

scala> val aggregateQuery=sqlContext.sql("SELECT a.name,sum(a.age) FROM (SELECT * FROM people WHERE age >= 13)a where a.age <= 19 group by a.name")
aggregateQuery: org.apache.spark.sql.DataFrame = [name: string, _c1: bigint]

运行流程查看:


scala> aggregateQuery.queryExecution
res6: org.apache.spark.sql.SQLContext#QueryExecution =
//注意‘Aggregate [‘a.name], [unresolvedalias(‘a.name),unresolvedalias(‘sum(‘a.age))]
//即group by a.name被 parsed为unresolvedalias(‘a.name)
== Parsed Logical Plan ==
‘Aggregate [‘a.name], [unresolvedalias(‘a.name),unresolvedalias(‘sum(‘a.age))]
 ‘Filter (‘a.age <= 19)
  ‘Subquery a
   ‘Project [unresolvedalias(*)]
    ‘Filter (‘age >= 13)
     ‘UnresolvedRelation [people], None

== Analyzed Logical Plan ==
name: string, _c1: bigint
Aggregate [name#0], [name#0,sum(cast(age#1 as bigint)) AS _c1#9L]
 Filter (age#1 <= 19)
  Subquery a
   Project [name#0,age#1]
    Filter (age#1 >= 13)
     Subquery people
      LogicalRDD [name#0,age#1], MapPartitionsRDD[4] at rddToDataFrameHolder at <console>:22

== Optimized Logical Plan ==
Aggregate [name#0], [name#0,sum(cast(age#1 as bigint)) AS _c1#9L]
 Filter ((age#1 >= 13) && (age#1 <= 19))
  LogicalRDD [name#0,age#1], MapPartitions...

//查看其Physical Plan
scala> aggregateQuery.queryExecution.sparkPlan
res10: org.apache.spark.sql.execution.SparkPlan =
TungstenAggregate(key=[name#0], functions=[(sum(cast(age#1 as bigint)),mode=Final,isDistinct=false)], output=[name#0,_c1#14L])
 TungstenAggregate(key=[name#0], functions=[(sum(cast(age#1 as bigint)),mode=Partial,isDistinct=false)], output=[name#0,currentSum#17L])
  Filter ((age#1 >= 13) && (age#1 <= 19))
   Scan PhysicalRDD[name#0,age#1]

其它SQL语句,大家可以使用同样的方法查看其执行流程,以掌握Spark SQL背后实现的基本思想。

Spark修炼之道(进阶篇)——Spark入门到精通:第九节 Spark SQL运行流程解析

标签:

原文地址:http://blog.csdn.net/lovehuangjiaju/article/details/50439715

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!