码迷,mamicode.com
首页 > 编程语言 > 详细

HMM 传统后向算法

时间:2016-01-02 18:23:26      阅读:197      评论:0      收藏:0      [点我收藏+]

标签:


 HMM 传统后向算法,已实现,仅供参考。

 

 

package jxutcm.edu.cn.hmm.model;

import jxutcm.edu.cn.hmm.bean.HMMHelper;
import jxutcm.edu.cn.util.TCMMath;

/**
 * 后向算法
 * 目的:
 * 1、先计算后向变量矩阵
 * 2、再用后向变量矩阵 来 计算一个观测序列的概率
 * 
@author aool
 
*/
public class Backward extends HMM{
    public int[] O;//观测序列observe//如yellow red blue yellow green 这些在enum Color {red,yellow,blue,green }的索引位置
    
    public double[][] beta; //后向变量矩阵
    
    /**
     * flag 表示 A和B是否是自然对数化(lnX)  true: A和B自然对数化后传进来  false: A和B未自然对数化
     
*/
    public Backward(double[][] A, double[][] B, double[] PI, int[] O, boolean flag) {
        super(A, B, PI, flag);
        this.O=O;
    }
    
    public Backward(HMM hmm, int[] O){
        super(hmm);
        this.O=O;
    }
    
    /**
     * 【计算后向变量矩阵】
     * 在时间t、位于隐藏状态为s_i(第i个隐藏状态,共N种隐藏状态)的条件下,hmm输出观察序列O(t+1)...O(T)的概率
     * beta[ t ][ i ] = beta_t( i ) = log(P(O(t+1)...O(T) | q_t=s_i, λ))
     
*/
    public void CalculateBackMatrix(){
        int T = O.length;
        beta = new double[ T ][ N ];//每一时刻(每行)上 可能出现的多个状态的发生的后向变量概率
        
//1、初始化——将T时刻、第i种隐藏状态输出观察序列的后向变量设置为1即log(1)=0
        for (int i = 0; i < N; i++){
            beta[ T-1 ][ i ] = 0; // = log(1) // should be hmm.logA[k][0]
        }
        //2、归纳计算——b_t(i)
        for (int t = T - 1 - 1; t >= 0; t--){//第 t 时刻下,从T-2开始向前算——下标从0开始——T-1表示最终时刻
            for (int i = 0; i < N; i++) {//第 i 种隐状态下
                double sum = Double.NEGATIVE_INFINITY; // = log(0)
                for (int j = 0; j < N; j++){//到第 j 种隐状态下的累计概率——b[t][i] = b_t(i) =∑Aij * Bj(O_t+1) *b_t+1( j )  其中b_t+1( j ) =b[t+1][j],求和符号上面是N,下面是j=1开始 
                    
// sum + = A[ i ][ j ] * B[ j ][ O(t+1) ] * beta[ t+1 ][ j ]
                    sum = TCMMath.logplus( sum, logA[ i ][ j ] + logB[ j ][ O[ t+1 ] ] + beta[t + 1][ j ]);
                }
                //beta[ t ][ i ] = 【t 时刻 所有 隐藏状态 i】到达 【t+1时刻 隐藏状态 j】并【t+1时刻显示出O( t+1 )】的后向变量概率
                
//beta[ t ][ i ] = ∑ ( A[ i ][ j ] * B[ j ][ O(t+1) ] * beta[ t+1 ][ j ] ) 求和符号表示 1<=j <=N
                beta[ t ][ i ] = sum;//在 【t 时刻、第 i 种隐藏状态】 下 输出观察序列 Ot+1……OT(已知观测序列的局部) 发生的概率
            }
        }
    }

    /**
     * 【计算一个观测序列的概率】——前提是先计算后向变量矩阵——返回的是自然对数
     * P( O | μ ) = ∑ PI_i*B_i*beta_1( i ) (求和上界N,求和下界i=1)——求所有隐藏状态在t=1时刻的累计和就是 观测序列的概率
     * 计算 t=0 时刻、位于第 0 状态下的 输出观察序列 O0……OT(已经观测序列的局部)发生的概率
     
*/
    public double logProb() {
        double sum = Double.NEGATIVE_INFINITY; // = log(0)
        for (int i = 0; i < N; i++){
            sum = TCMMath.logplus( sum, logPI[ i ] + logB[ i ][ O[0] ] + beta[ 0 ][ i ]);
        }
        return sum;
    }
    
    /**
     * 打印后向变量矩阵
     
*/
    public void print() {
        for (int j = 0; j < N; j++) {
            for (int i = 0; i < beta.length; i++){
                System.out.print(HMMHelper.fmtlog( beta[ i ][ j ]) );
            }
            System.out.println();
        }
    }

} 

HMM 传统后向算法

标签:

原文地址:http://www.cnblogs.com/whaozl/p/5094876.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!