码迷,mamicode.com
首页 > 系统相关 > 详细

[Linux][Hadoop] 运行WordCount例子

时间:2014-07-23 11:34:06      阅读:488      评论:0      收藏:0      [点我收藏+]

标签:style   blog   http   java   color   文件   

紧接上篇,完成Hadoop的安装并跑起来之后,是该运行相关例子的时候了,而最简单最直接的例子就是HelloWorld式的WordCount例子。

 

参照博客进行运行:http://xiejianglei163.blog.163.com/blog/static/1247276201443152533684/

 

首先创建一个文件夹,并创建两个文件,目录随意,为以下文件结构:

examples

--file1.txt

--file2.txt

文件内容随意填写,我是从新闻copy下来的一段英文:

执行以下命令:

hadoop@ubuntu:/usr/local/gz/hadoop-2.4.1$ ./bin/hadoop fs -mkdir /data    #在hadoop中创建/data文件夹,该文件夹用来存放输入数据,这个文件不是Linux的根目录下的文件,而是hadoop下的文件夹
hadoop@ubuntu:/usr/local/gz/hadoop-2.4.1$ ./bin/hadoop fs -put -f ./data_input/* /data #将前面生成的两个 文件拷贝至/data下

bubuko.com,布布扣

 

执行WordCount命令,并查看结果:

hadoop@ubuntu:/usr/local/gz/hadoop-2.4.1$ ./bin/hadoop jar ./share/hadoop/mapreduce/sources/hadoop-mapreduce-examples-2.4.1-sources.jar org.apache.hadoop.examples.WordCount /data /output
14/07/22 22:34:25 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
14/07/22 22:34:27 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
14/07/22 22:34:29 INFO input.FileInputFormat: Total input paths to process : 2
14/07/22 22:34:29 INFO mapreduce.JobSubmitter: number of splits:2
14/07/22 22:34:30 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1406038146260_0001
14/07/22 22:34:32 INFO impl.YarnClientImpl: Submitted application application_1406038146260_0001
14/07/22 22:34:32 INFO mapreduce.Job: The url to track the job: http://ubuntu:8088/proxy/application_1406038146260_0001/
14/07/22 22:34:32 INFO mapreduce.Job: Running job: job_1406038146260_0001
14/07/22 22:34:58 INFO mapreduce.Job: Job job_1406038146260_0001 running in uber mode : false
14/07/22 22:34:58 INFO mapreduce.Job:  map 0% reduce 0%
14/07/22 22:35:34 INFO mapreduce.Job:  map 100% reduce 0%
14/07/22 22:35:52 INFO mapreduce.Job:  map 100% reduce 100%
14/07/22 22:35:52 INFO mapreduce.Job: Job job_1406038146260_0001 completed successfully
14/07/22 22:35:53 INFO mapreduce.Job: Counters: 49
        File System Counters
                FILE: Number of bytes read=2521
                FILE: Number of bytes written=283699
                FILE: Number of read operations=0
                FILE: Number of large read operations=0
                FILE: Number of write operations=0
                HDFS: Number of bytes read=2280
                HDFS: Number of bytes written=1710
                HDFS: Number of read operations=9
                HDFS: Number of large read operations=0
                HDFS: Number of write operations=2
        Job Counters 
                Launched map tasks=2
                Launched reduce tasks=1
                Data-local map tasks=2
                Total time spent by all maps in occupied slots (ms)=71182
                Total time spent by all reduces in occupied slots (ms)=13937
                Total time spent by all map tasks (ms)=71182
                Total time spent by all reduce tasks (ms)=13937
                Total vcore-seconds taken by all map tasks=71182
                Total vcore-seconds taken by all reduce tasks=13937
                Total megabyte-seconds taken by all map tasks=72890368
                Total megabyte-seconds taken by all reduce tasks=14271488
        Map-Reduce Framework
                Map input records=29
                Map output records=274
                Map output bytes=2814
                Map output materialized bytes=2527
                Input split bytes=202
                Combine input records=274
                Combine output records=195
                Reduce input groups=190
                Reduce shuffle bytes=2527
                Reduce input records=195
                Reduce output records=190
                Spilled Records=390
                Shuffled Maps =2
                Failed Shuffles=0
                Merged Map outputs=2
                GC time elapsed (ms)=847
                CPU time spent (ms)=6410
                Physical memory (bytes) snapshot=426119168
                Virtual memory (bytes) snapshot=1953292288
                Total committed heap usage (bytes)=256843776
        Shuffle Errors
                BAD_ID=0
                CONNECTION=0
                IO_ERROR=0
                WRONG_LENGTH=0
                WRONG_MAP=0
                WRONG_REDUCE=0
        File Input Format Counters 
                Bytes Read=2078
        File Output Format Counters 
                Bytes Written=1710
hadoop@ubuntu:/usr/local/gz/hadoop-2.4.1$

上面的日志显示出了wordCount的详细情况,然后执行查看结果命令查看统计结果:

hadoop@ubuntu:/usr/local/gz/hadoop-2.4.1$ ./bin/hadoop fs -cat /output/part-r-00000
14/07/22 22:38:05 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
"as     1
"atrocious,"    1
-       1
10-day  1
13      1
18      1
20,     1
2006.   1
3,000   1
432     1
65      1
7.4.52  1
:help   2
:help<Enter>    1
:q<Enter>       1
<F1>    1
Already,        1
Ban     1
Benjamin        1

后面省略了很多统计数据,wordCount统计结果完成。

[Linux][Hadoop] 运行WordCount例子,布布扣,bubuko.com

[Linux][Hadoop] 运行WordCount例子

标签:style   blog   http   java   color   文件   

原文地址:http://www.cnblogs.com/garinzhang/p/linux_hadoop_demo_wordcount.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!