【实验说明】
题目:编写一个程序,对有序表{1,2,3,4,5,6,7,8,9,10},采用二分查找关键字9的过程。要求输出:
1)原顺序表;2)查找到关键字的位置;3)进行比较的次数。
1.二分查找算法的前提是表必须是有序的,如题目中是递增方式排列的表。实现表的有序一方面是用户规范输入,另一方面我们也可以编写有序的类来方便用户的输入。
所以从List中派生类Oredered_list,重新编写函数Error_code insert(int position,const Record &data),使插入的位置不满足表的有序条件时,不能插入。
同时编写插入的重载函数 Error_code insert(const Record &data),可以直接插入到合适的位置,方便用户输入。
2.仍使用题目1中的Key来表示目标
3.实现二分查找算法。通过书中的学习,我们直接使用添加相等判断的二分查找算法。即每次从表的中间元素开始比较,如果得到目标则返回元素所在表中位置;如果中间元素小于目标元素,则对右半部分继续二分查找;反之对前半部分表进行二分查找。若最后都没有目标元素,返回-1用以表示表中没有目标元素。
【过程记录】
实验截图:
【结果分析】
A.实现顺序查找算法
1.顺序查找算法思路很简单,就是一种遍历的思想,一个个查找目标元素,实现也很简单。
2.对于有n个元素的表适用顺序查找。比较次数:不成功:比较n次。成功查找:最好的情况为1次,即第一个元素即为目标元素;最差的情况为n次;平均比较次数(n+1)/2次。
所以当表很大时,顺序查找的代价是很大的。
3.顺序查找算法不会有重复的比较出现,即一旦找到即成功,但同时这种代价是当表中有重复的目标元素时(比如有多个目标元素)我们只能得到第一个元素的位置。
B.实现二分查找算法
1.二分查找法思路:递增排列的表,首先从中间元素开始查找,如果元素比目标元素小,则查找后半部分表,反之查找前半部分表,并重复这一过程。这样每次查找中我们都把表的长度减半。
2.二分查找在实现中有量bottom和top,每次减半的过程体现在bottom和top的改变上,在代码的实现上可以使用单纯的循环或者用函数递归的思想。
递归思想更容易理解,但编写之后我们发现函数是尾递归,尾递归通常可以用简单的循环实现,循环在操作来说没有了函数调用的过程,更节省时间和空间。
3.编码中小小地方的改动可能对程序有很大的改观。