标签:
C++ 描述:
1 #include <iostream> 2 #include <string> 3 #include <fstream> 4 #include <sstream> 5 #include <vector> 6 #include <map> 7 #include <set> 8 9 using namespace std; 10 11 class NaiveBayes { 12 public: 13 void load_data(string path); 14 void train_model(); 15 int predict(const vector<int> &item); 16 private: 17 vector<vector<int>> data; 18 map<pair<int, int>, double> c_p; //conditional prob 19 map<int, double> p_p; // prior prob 20 }; 21 22 void NaiveBayes::load_data(string path) { 23 ifstream fin(path.c_str()); 24 if (!fin) { 25 cerr << "open file error" << endl; 26 exit(1); 27 } 28 29 string line; 30 while (getline(fin, line)) { 31 if (line.size() > 1) { 32 stringstream sin(line); 33 int elem; 34 vector<int> tmp; 35 while (sin >> elem) { 36 tmp.push_back(elem); 37 } 38 data.push_back(tmp); 39 } 40 } 41 fin.close(); 42 } 43 44 void NaiveBayes::train_model() { 45 for (auto &d : data) { 46 int len = d.size(); 47 p_p[d[len - 1]] += (1.0 / data.size()); 48 } 49 50 for (auto &p : p_p) { 51 int label = p.first; 52 double prior = p.second; 53 for (auto &d : data) { 54 for (int i = 0; i < d.size(); ++i) { 55 c_p[make_pair(d[i], label)] += (1.0 / (prior * data.size())); 56 } 57 } 58 } 59 } 60 61 int NaiveBayes::predict(const vector<int> &item) { 62 int result; 63 double max_prob = 0.0; 64 for (auto &p : p_p) { 65 int label = p.first; 66 double prior = p.second; 67 double prob = prior; 68 for (int i = 0; i < item.size() - 1; ++i) { 69 prob *= c_p[make_pair(item[i], label)]; 70 } 71 72 if (prob > max_prob) { 73 max_prob = prob; 74 result = label; 75 } 76 } 77 78 return result; 79 } 80 81 int main() { 82 NaiveBayes naive_bayes; 83 naive_bayes.load_data(string("result.txt")); 84 naive_bayes.train_model(); 85 86 vector<int> item{2, 4}; 87 cout << naive_bayes.predict(item); 88 return 0; 89 }
数据集:
1 4 -1 1 5 -1 1 5 1 1 4 1 1 4 -1 2 4 -1 2 5 -1 2 5 1 2 6 1 2 6 1 3 6 1 3 5 1 3 5 1 3 6 1 3 6 -1
[Machine Learning]朴素贝叶斯(NaiveBayes)
标签:
原文地址:http://www.cnblogs.com/skycore/p/5127725.html