码迷,mamicode.com
首页 > 数据库 > 详细

Spark SQL性能优化

时间:2016-01-14 06:15:31      阅读:230      评论:0      收藏:0      [点我收藏+]

标签:

1、设置Shuffle过程中的并行度:spark.sql.shuffle.partitions(SQLContext.setConf())

2、在Hive数据仓库建设过程中,合理设置数据类型,比如能设置为INT的,就不要设置为BIGINT。减少数据类型导致的不必要的内存开销。

3、编写SQL时,尽量给出明确的列名,比如select name from students。不要写select *的方式。

4、并行处理查询结果:对于Spark SQL查询的结果,如果数据量比较大,比如超过1000条,那么就不要一次性collect()到Driver再处理。使用foreach()算子,并行处理查询结果。

5、缓存表:对于一条SQL语句中可能多次使用到的表,可以对其进行缓存,使用SQLContext.cacheTable(tableName),或者DataFrame.cache()即可。Spark SQL会用内存列存储的格式进行表的缓存。然后Spark SQL就可以仅仅扫描需要使用的列,并且自动优化压缩,来最小化内存使用和GC开销。SQLContext.uncacheTable(tableName)可以将表从缓存中移除。用SQLContext.setConf(),设置spark.sql.inMemoryColumnarStorage.batchSize参数(默认10000),可以配置列存储的单位。

6、广播join表:spark.sql.autoBroadcastJoinThreshold,默认10485760 (10 MB)。在内存够用的情况下,可以增加其大小,概参数设置了一个表在join的时候,最大在多大以内,可以被广播出去优化性能。

7、钨丝计划:spark.sql.tungsten.enabled,默认是true,自动管理内存。

Spark SQL性能优化

标签:

原文地址:http://www.cnblogs.com/thinkpad/p/5128991.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!