标签:
本文介绍一下2015 ImageNet中分类任务的冠军——MSRA何凯明团队的Residual Networks。实际上,MSRA是今年Imagenet的大赢家,不单在分类任务,MSRA还用residual networks赢了 ImageNet的detection, localization, 以及COCO数据集上的detection和segmentation, 那本文就简单分析下Residual Networks。
目录
————————————
1. Motivation
2. 网络结构
3. 实验结果
4. 重要reference
作者首先抛出了这个问题, 深度神经网络是不是越深越好。
照我们一般的经验,只要网络不训飞(也就是最早在LSTM中提出的vanishing/exploding problem),而且不过拟合, 那应该是越深越好。
但是有这么个情况,网络加深了, accuracy却下降了,称这种情况为degradation。如下图所示(详见[1]):
Shortcut Connections
其实本文想法和Highway networks(Jurgen Schmidhuber的文章)非常相似, 就连要解决的问题(degradation)都一样。Highway networks一文借用LSTM中gate的概念,除了正常的非线性映射H(x, Wh)外,还设置了一条从x直接到y的通路,以T(x, Wt)作为gate来把握两者之间的权重,如下公式所示:
Residual Networks一文中,作者将Highway network中的含参加权连接变为固定加权连接,即
Residual Learning
至此,我们一直没有提及residual networks中residual的含义。那这个“残差“指什么呢?我们想:
如果能用几层网络去逼近一个复杂的非线性映射H(x),那么同样可以用这几层网络去逼近它的residual function:
推荐读者们还是看一下本文最后列出的这篇reference paper,本文中作者说与Highway network相比的优势在于:
x | Highway Network | Residual Network | 评论 |
---|---|---|---|
gate参数 | 有参数变量 |
没参数,定死的, 方便和没有residual的网络比较 | 算不上优势,参数少又data-independent,结果肯定不会是最优的,文章实验部分也对比了效果,确实是带参数的error更小,但是 |
关门? | 有可能关门( |
不会关门 |
所以说这个比较还是比较牵强。。anyway,人家讲个故事也是不容易了。
34层 residual network
网络构建思路:基本保持各层complexity不变,也就是哪层down-sampling了,就把filter数*2, 网络太大,此处不贴了,大家看paper去吧, paper中画了一个34层全卷积网络, 没有了后面的几层fc,难怪说152层的网络比16-19层VGG的计算量还低。
这里再讲下文章中讲实现部分的 tricks:
其实看下来都是挺常规的方法。
34层与18层网络比较:训练过程中,
34层plain net(不带residual function)比18层plain net的error大
34层residual net(不带residual function)比18层residual net的error小,更比34层plain net小了3.5%(top1)
18层residual net比18层plain net收敛快
Residual function的设置:
A)在H(x)与x维度不同时, 用0充填补足
B) 在H(x)与x维度不同时, 带
C)任何shortcut都带
loss效果: A>B>C
[1]. Highway Networks
[2]. ImageNet Classification with Deep Convolutional Neural Networks
[3]. Batch Normalization
[4]. VGG
Residual Networks <2015 ICCV, ImageNet 图像分类Top1>
标签:
原文地址:http://blog.csdn.net/abcjennifer/article/details/50514124