标签:
#!/usr/bin/python278 # _*_ coding: utf-8 _*_ import kNN reload(kNN) datingDataMat,datingLabels=kNN.file2matrix('datingTestSet2.txt') import matplotlib import matplotlib.pyplot as plt zhfont = matplotlib.font_manager.FontProperties(fname='C:\Windows\Fonts\ukai.ttc') fig=plt.figure() ax=fig.add_subplot(111) from numpy import * ax.scatter(datingDataMat[:,1],datingDataMat[:,2]) plt.xlabel(u'玩游戏所耗时间百分比', fontproperties=zhfont) plt.ylabel(u'每周消费的冰淇淋公升数', fontproperties=zhfont) plt.show()
#!/usr/bin/python278 # _*_ coding: utf-8 _*_ import kNN reload(kNN) datingDataMat,datingLabels=kNN.file2matrix('datingTestSet2.txt') import matplotlib import matplotlib.pyplot as plt zhfont = matplotlib.font_manager.FontProperties(fname='C:\Windows\Fonts\ukai.ttc') fig=plt.figure() ax=fig.add_subplot(111) from numpy import * ax.scatter(datingDataMat[:,1],datingDataMat[:,2],15.0*array(datingLabels),15.0*array(datingLabels)) plt.xlabel(u'玩游戏所耗时间百分比', fontproperties=zhfont) plt.ylabel(u'每周消费的冰淇淋公升数', fontproperties=zhfont) plt.show()
#!/usr/bin/env python # _*_ coding: utf-8 _*_ import kNN reload(kNN) import matplotlib import matplotlib.pyplot as plt matrix, labels = kNN.file2matrix('datingTestSet2.txt') print matrix print labels zhfont = matplotlib.font_manager.FontProperties(fname='C:\Windows\Fonts\ukai.ttc') plt.figure(figsize=(8, 5), dpi=80) axes = plt.subplot(111) # 将三类数据分别取出来 # x轴代表飞行的里程数 # y轴代表玩视频游戏的百分比 type1_x = [] type1_y = [] type2_x = [] type2_y = [] type3_x = [] type3_y = [] print 'range(len(labels)):' print range(len(labels)) for i in range(len(labels)): if labels[i] == 1: # 不喜欢 type1_x.append(matrix[i][0]) type1_y.append(matrix[i][1]) if labels[i] == 2: # 魅力一般 type2_x.append(matrix[i][0]) type2_y.append(matrix[i][1]) if labels[i] == 3: # 极具魅力 print i, ':', labels[i], ':', type(labels[i]) type3_x.append(matrix[i][0]) type3_y.append(matrix[i][1]) type1 = axes.scatter(type1_x, type1_y, s=20, c='red') type2 = axes.scatter(type2_x, type2_y, s=40, c='green') type3 = axes.scatter(type3_x, type3_y, s=50, c='blue') # plt.scatter(matrix[:, 0], matrix[:, 1], s=20 * numpy.array(labels), # c=50 * numpy.array(labels), marker='o', # label='test') plt.xlabel(u'每年获取的飞行里程数', fontproperties=zhfont) plt.ylabel(u'玩视频游戏所消耗的事件百分比', fontproperties=zhfont) axes.legend((type1, type2, type3), (u'不喜欢', u'魅力一般', u'极具魅力'), loc=2, prop=zhfont) plt.show()
def autoNorm(dataSet): minVals = dataSet.min(0) maxVals = dataSet.max(0) ranges = maxVals - minVals normDataSet = zeros(shape(dataSet)) m = dataSet.shape[0] normDataSet = dataSet - tile(minVals, (m,1)) normDataSet = normDataSet/tile(ranges, (m,1)) #element wise divide return normDataSet, ranges, minVals
>>> import kNN >>> reload(kNN) <module 'kNN' from 'kNN.pyc'> >>> datingDataMat,datingLabels=kNN.file2matrix('datingTestSet2.txt') >>> normMat,ranges,minVals=kNN.autoNorm(datingDataMat) >>> normMat array([[ 0.44832535, 0.39805139, 0.56233353], [ 0.15873259, 0.34195467, 0.98724416], [ 0.28542943, 0.06892523, 0.47449629], ..., [ 0.29115949, 0.50910294, 0.51079493], [ 0.52711097, 0.43665451, 0.4290048 ], [ 0.47940793, 0.3768091 , 0.78571804]]) >>> ranges array([ 9.12730000e+04, 2.09193490e+01, 1.69436100e+00]) >>> minVals array([ 0. , 0. , 0.001156])
def datingClassTest(): hoRatio = 0.50 #hold out 10% datingDataMat,datingLabels = file2matrix('datingTestSet2.txt') #load data setfrom file normMat, ranges, minVals = autoNorm(datingDataMat) m = normMat.shape[0] numTestVecs = int(m*hoRatio) errorCount = 0.0 for i in range(numTestVecs): classifierResult = classify0(normMat[i,:],normMat[numTestVecs:m,:],datingLabels[numTestVecs:m],3) print "the classifier came back with: %d, the real answer is: %d" % (classifierResult, datingLabels[i]) if (classifierResult != datingLabels[i]): errorCount += 1.0 print "the total error rate is: %f" % (errorCount/float(numTestVecs)) print errorCount
>>> kNN.datingClassTest() the classifier came back with: 3, the real answer is: 3 the classifier came back with: 2, the real answer is: 2 the classifier came back with: 1, the real answer is: 1 the classifier came back with: 1, the real answer is: 1 the classifier came back with: 1, the real answer is: 1 the classifier came back with: 1, the real answer is: 1 the classifier came back with: 3, the real answer is: 3 the classifier came back with: 3, the real answer is: 3 the classifier came back with: 1, the real answer is: 1 the classifier came back with: 3, the real answer is: 3 the classifier came back with: 1, the real answer is: 1 the classifier came back with: 1, the real answer is: 1.
the classifier came back with: 1, the real answer is: 1 the classifier came back with: 1, the real answer is: 1 the classifier came back with: 1, the real answer is: 1 the classifier came back with: 3, the real answer is: 3 the classifier came back with: 1, the real answer is: 1 the classifier came back with: 2, the real answer is: 1 the classifier came back with: 2, the real answer is: 2 the classifier came back with: 1, the real answer is: 1 the classifier came back with: 1, the real answer is: 1 the classifier came back with: 2, the real answer is: 2 the total error rate is: 0.064000
def classifyPerson(): resultList=['not at all','in small doses','in large doses'] percentTats=float(raw_input("percentage of time spent playing video games?")) ffMiles=float(raw_input("frequent flier miles earned per year?")) iceCream=float(raw_input("liters of ice cream consumed per year?")) datingDataMat,datingLabels=file2matrix('datingTestSet2.txt') normMat,ranges,minVals=autoNorm(datingDataMat) inArr=array([ffMiles,percentTats,iceCream]) classifierResult=classify0((inArr-minVals)/ranges,normMat,datingLabels,3) print "You will probably like this person:",resultList[classifierResult-1]代码讲解:Python中的raw_input()允许用户输入文本行命令并返回用户所输入的命令
>>> import kNN >>> reload(kNN) <module 'kNN' from 'kNN.py'> >>> kNN.classifyPerson() percentage of time spent playing video games?10 frequent flier miles earned per year?10000 liters of ice cream consumed per year?0.5 You will probably like this person: in small doses
标签:
原文地址:http://blog.csdn.net/geekmanong/article/details/50523331