标签:spark
今天准备将mysql的数据倒腾到RDD,很早以前就知道有一个JdbcRDD,就想着使用一下,结果发现却是鸡肋一个。* An RDD that executes an SQL query on a JDBC connection and reads results. * For usage example, see test case JdbcRDDSuite. * * @param getConnection a function that returns an open Connection. * The RDD takes care of closing the connection. * @param sql the text of the query. * The query must contain two ? placeholders for parameters used to partition the results. * E.g. "select title, author from books where ? <= id and id <= ?" * @param lowerBound the minimum value of the first placeholder * @param upperBound the maximum value of the second placeholder * The lower and upper bounds are inclusive. * @param numPartitions the number of partitions. * Given a lowerBound of 1, an upperBound of 20, and a numPartitions of 2, * the query would be executed twice, once with (1, 10) and once with (11, 20) * @param mapRow a function from a ResultSet to a single row of the desired result type(s). * This should only call getInt, getString, etc; the RDD takes care of calling next. * The default maps a ResultSet to an array of Object. */ class JdbcRDD[T: ClassTag]( sc: SparkContext, getConnection: () => Connection, sql: String, lowerBound: Long, upperBound: Long, numPartitions: Int, mapRow: (ResultSet) => T = JdbcRDD.resultSetToObjectArray _)
package test import java.sql.{Connection, DriverManager, ResultSet} import org.apache.spark.rdd.JdbcRDD import org.apache.spark.{SparkConf, SparkContext} object spark_mysql { def main(args: Array[String]) { //val conf = new SparkConf().setAppName("spark_mysql").setMaster("local") val sc = new SparkContext("local","spark_mysql") def createConnection() = { Class.forName("com.mysql.jdbc.Driver").newInstance() DriverManager.getConnection("jdbc:mysql://192.168.0.15:3306/wsmall", "root", "passwd") } def extractValues(r: ResultSet) = { (r.getString(1), r.getString(2)) } val data = new JdbcRDD(sc, createConnection, "SELECT id,aa FROM bbb where ? <= ID AND ID <= ?", lowerBound = 3, upperBound =5, numPartitions = 1, mapRow = extractValues) println(data.collect().toList) sc.stop() } }
标签:spark
原文地址:http://blog.csdn.net/book_mmicky/article/details/38066067