任务描述:在一个无向图中,获取起始节点到所有其他节点的最短路径描述
Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。
Dijkstra一般的表述通常有两种方式,一种用永久和临时标号方式,一种是用OPEN, CLOSE表方式
用OPEN,CLOSE表的方式,其采用的是贪心法的算法策略,大概过程如下:
1.声明两个集合,open和close,open用于存储未遍历的节点,close用来存储已遍历的节点
2.初始阶段,将初始节点放入close,其他所有节点放入open
3.以初始节点为中心向外一层层遍历,获取离指定节点最近的子节点放入close并从新计算路径,直至close包含所有子节点
代码实例如下:
Node对象用于封装节点信息,包括名字和子节点
- public class Node {
- private String name;
- private Map<Node,Integer> child=new HashMap<Node,Integer>();
- public Node(String name){
- this.name=name;
- }
- public String getName() {
- return name;
- }
- public void setName(String name) {
- this.name = name;
- }
- public Map<Node, Integer> getChild() {
- return child;
- }
- public void setChild(Map<Node, Integer> child) {
- this.child = child;
- }
- }
MapBuilder用于初始化数据源,返回图的起始节点
- public class MapBuilder {
- public Node build(Set<Node> open, Set<Node> close){
- Node nodeA=new Node("A");
- Node nodeB=new Node("B");
- Node nodeC=new Node("C");
- Node nodeD=new Node("D");
- Node nodeE=new Node("E");
- Node nodeF=new Node("F");
- Node nodeG=new Node("G");
- Node nodeH=new Node("H");
- nodeA.getChild().put(nodeB, 1);
- nodeA.getChild().put(nodeC, 1);
- nodeA.getChild().put(nodeD, 4);
- nodeA.getChild().put(nodeG, 5);
- nodeA.getChild().put(nodeF, 2);
- nodeB.getChild().put(nodeA, 1);
- nodeB.getChild().put(nodeF, 2);
- nodeB.getChild().put(nodeH, 4);
- nodeC.getChild().put(nodeA, 1);
- nodeC.getChild().put(nodeG, 3);
- nodeD.getChild().put(nodeA, 4);
- nodeD.getChild().put(nodeE, 1);
- nodeE.getChild().put(nodeD, 1);
- nodeE.getChild().put(nodeF, 1);
- nodeF.getChild().put(nodeE, 1);
- nodeF.getChild().put(nodeB, 2);
- nodeF.getChild().put(nodeA, 2);
- nodeG.getChild().put(nodeC, 3);
- nodeG.getChild().put(nodeA, 5);
- nodeG.getChild().put(nodeH, 1);
- nodeH.getChild().put(nodeB, 4);
- nodeH.getChild().put(nodeG, 1);
- open.add(nodeB);
- open.add(nodeC);
- open.add(nodeD);
- open.add(nodeE);
- open.add(nodeF);
- open.add(nodeG);
- open.add(nodeH);
- close.add(nodeA);
- return nodeA;
- }
- }
图的结构如下图所示:
Dijkstra对象用于计算起始节点到所有其他节点的最短路径
- public class Dijkstra {
- Set<Node> open=new HashSet<Node>();
- Set<Node> close=new HashSet<Node>();
- Map<String,Integer> path=new HashMap<String,Integer>();
- Map<String,String> pathInfo=new HashMap<String,String>();
- public Node init(){
-
- path.put("B", 1);
- pathInfo.put("B", "A->B");
- path.put("C", 1);
- pathInfo.put("C", "A->C");
- path.put("D", 4);
- pathInfo.put("D", "A->D");
- path.put("E", Integer.MAX_VALUE);
- pathInfo.put("E", "A");
- path.put("F", 2);
- pathInfo.put("F", "A->F");
- path.put("G", 5);
- pathInfo.put("G", "A->G");
- path.put("H", Integer.MAX_VALUE);
- pathInfo.put("H", "A");
-
- Node start=new MapBuilder().build(open,close);
- return start;
- }
- public void computePath(Node start){
- Node nearest=getShortestPath(start);
- if(nearest==null){
- return;
- }
- close.add(nearest);
- open.remove(nearest);
- Map<Node,Integer> childs=nearest.getChild();
- for(Node child:childs.keySet()){
- if(open.contains(child)){
- Integer newCompute=path.get(nearest.getName())+childs.get(child);
- if(path.get(child.getName())>newCompute){
- path.put(child.getName(), newCompute);
- pathInfo.put(child.getName(), pathInfo.get(nearest.getName())+"->"+child.getName());
- }
- }
- }
- computePath(start);
- computePath(nearest);
- }
- public void printPathInfo(){
- Set<Map.Entry<String, String>> pathInfos=pathInfo.entrySet();
- for(Map.Entry<String, String> pathInfo:pathInfos){
- System.out.println(pathInfo.getKey()+":"+pathInfo.getValue());
- }
- }
-
- private Node getShortestPath(Node node){
- Node res=null;
- int minDis=Integer.MAX_VALUE;
- Map<Node,Integer> childs=node.getChild();
- for(Node child:childs.keySet()){
- if(open.contains(child)){
- int distance=childs.get(child);
- if(distance<minDis){
- minDis=distance;
- res=child;
- }
- }
- }
- return res;
- }
- }
Main用于测试Dijkstra对象
- public class Main {
- public static void main(String[] args) {
- Dijkstra test=new Dijkstra();
- Node start=test.init();
- test.computePath(start);
- test.printPathInfo();
- }
- }
打印输出如下:
D:A->D
E:A->F->E
F:A->F
G:A->C->G
B:A->B
C:A->C
H:A->B->H