标签:
基数排序又称桶排序。
基数排序与本系列前面讲解的七种排序方法都不同,它不需要比较关键字的大小。
它是根据关键字中各位的值,通过对排序的N个元素进行若干趟“分配”与“收集”来实现排序的。
不妨通过一个具体的实例来展示一下,基数排序是如何进行的。
我们知道,任何一个阿拉伯数,它的各个位数上的基数都是以0~9来表示的。
所以我们不妨把0~9视为10个桶。
我们先根据序列的个位数的数字来进行分类,将其分到指定的桶中。例如:R[0] = 50,个位数上是0,将这个数存入编号为0的桶中。
分类后,我们在从各个桶中,将这些数按照从编号0到编号9的顺序依次将所有数取出来。
这时,得到的序列就是个位数上呈递增趋势的序列。
接下来,可以对十位数、百位数也按照这种方法进行排序,最后就能得到排序完成的序列。
代码如下:
(1)LSD法实现
实现代码
原理类似桶排序,这里总是需要10个桶,多次使用
首先以个位数的值进行装桶,即个位数为1则放入1号桶,为9则放入9号桶,暂时忽视十位数
例如
待排序数组[62,14,59,88,16]简单点五个数字
分配10个桶,桶编号为0-9,以个位数数字为桶编号依次入桶,变成下边这样
| 0 | 0 | 62 | 0 | 14 | 0 | 16 | 0 | 88 | 59 |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |桶编号
将桶里的数字顺序取出来,
输出结果:[62,14,16,88,59]
再次入桶,不过这次以十位数的数字为准,进入相应的桶,变成下边这样:
由于前边做了个位数的排序,所以当十位数相等时,个位数字是由小到大的顺序入桶的,就是说,入完桶还是有序
| 0 | 14,16 | 0 | 0 | 0 | 59 | 62 | 0 | 88 | 0 |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |桶编号
因为没有大过100的数字,没有百位数,所以到这排序完毕,顺序取出即可
最后输出结果:[14,16,59,62,88]
代码仅供参考
/// <summary>
/// 基数排序
/// 约定:待排数字中没有0,如果某桶内数字为0则表示该桶未被使用,输出时跳过即可
/// </summary>
/// <param name="unsorted">待排数组</param>
/// <param name="array_x">桶数组第一维长度</param>
/// <param name="array_y">桶数组第二维长度</param>
static void radix_sort(int[] unsorted, int array_x = 10, int array_y = 100)
{
for (int i = 0; i < array_x/* 最大数字不超过999999999...(array_x个9) */; i++)
{
int[,] bucket = new int[array_x, array_y];
foreach (var item in unsorted)
{
int temp = (item / (int)Math.Pow(10, i)) % 10;
for (int l = 0; l < array_y; l++)
{
if (bucket[temp, l] == 0)
{
bucket[temp, l] = item;
break;
}
}
}
for (int o = 0, x = 0; x < array_x; x++)
{
for (int y = 0; y < array_y; y++)
{
if (bucket[x, y] == 0) continue;
unsorted[o++] = bucket[x, y];
}
}
}
}
static void Main(string[] args)
{
int[] x = { 999999999, 65, 24, 47, 13, 50, 92, 88, 66, 33, 22445, 10001, 624159, 624158, 624155501 };
radix_sort(x);
foreach (var item in x)
{
if (item > 0)
Console.WriteLine(item + ",");
}
Console.ReadLine();
}
基数排序的性能
排序类别 | 排序方法 | 时间复杂度 | 空间复杂度 | 稳定性 | 复杂性 | ||
平均情况 | 最坏情况 | 最好情况 | |||||
基数排序 | 基数排序 | O(d(n+r)) | O(d(n+r)) | O(d(n+r)) | O(n+r) | 稳定 | 较复杂 |
时间复杂度
通过上文可知,假设在基数排序中,r为基数,d为位数。则基数排序的时间复杂度为O(d(n+r))。
我们可以看出,基数排序的效率和初始序列是否有序没有关联。
空间复杂度
在基数排序过程中,对于任何位数上的基数进行“装桶”操作时,都需要n+r个临时空间。
算法稳定性
在基数排序过程中,每次都是将当前位数上相同数值的元素统一“装桶”,并不需要交换位置。所以基数排序是稳定的算法。
标签:
原文地址:http://www.cnblogs.com/nxxshxf/p/5151422.html