码迷,mamicode.com
首页 > 编程语言 > 详细

基数排序

时间:2016-01-22 17:57:14      阅读:207      评论:0      收藏:0      [点我收藏+]

标签:

基数排序又称桶排序

基数排序与本系列前面讲解的七种排序方法都不同,它不需要比较关键字的大小

它是根据关键字中各位的值,通过对排序的N个元素进行若干趟“分配”与“收集”来实现排序的。

不妨通过一个具体的实例来展示一下,基数排序是如何进行的。

设有一个初始序列为: R {50, 123, 543, 187, 49, 30, 0, 2, 11, 100}。

我们知道,任何一个阿拉伯数,它的各个位数上的基数都是以0~9来表示的。

所以我们不妨把0~9视为10个桶。

我们先根据序列的个位数的数字来进行分类,将其分到指定的桶中。例如:R[0] = 50,个位数上是0,将这个数存入编号为0的桶中。

技术分享

分类后,我们在从各个桶中,将这些数按照从编号0到编号9的顺序依次将所有数取出来。

这时,得到的序列就是个位数上呈递增趋势的序列。

按照个位数排序: {50, 30, 0, 100, 11, 2, 123, 543, 187, 49}。

接下来,可以对十位数、百位数也按照这种方法进行排序,最后就能得到排序完成的序列。

代码如下:

(1)LSD法实现

实现代码

技术分享
public class RadixSort {

    // 获取x这个数的d位数上的数字
    // 比如获取123的1位数,结果返回3
    public int getDigit(int x, int d) {
        int a[] = { 1, 1, 10, 100 }; // 本实例中的最大数是百位数,所以只要到100就可以了
        return ((x / a[d]) % 10);
    }

    public void radixSort(int[] list, int begin, int end, int digit) {
        final int radix = 10; // 基数
        int i = 0, j = 0;
        int[] count  = new int[radix]; // 存放各个桶的数据统计个数
        int[] bucket = new int[end - begin + 1];

        // 按照从低位到高位的顺序执行排序过程
        for (int d = 1; d <= digit; d++) {

            // 置空各个桶的数据统计
            for (i = 0; i < radix; i++) {
                count[i] = 0;
            }

            // 统计各个桶将要装入的数据个数
            for (i = begin; i <= end; i++) {
                j = getDigit(list[i], d);
                count[j]++;
            }

            // count[i]表示第i个桶的右边界索引
            for (i = 1; i < radix; i++) {
                count[i] = count[i] + count[i - 1];
            }

            // 将数据依次装入桶中
            // 这里要从右向左扫描,保证排序稳定性 
            for (i = end; i >= begin; i--) {
                j = getDigit(list[i], d); // 求出关键码的第k位的数字, 例如:576的第3位是5
                bucket[count[j] - 1] = list[i]; //放入对应的桶中,count[j]-1是第j个桶的右边界索引 
                count[j]--; // 对应桶的装入数据索引减一  
            }

            // 将已分配好的桶中数据再倒出来,此时已是对应当前位数有序的表
            for (i = begin, j = 0; i <= end; i++, j++) {
                list[i] = bucket[j];
            }
            
        }

    }

    public int[] sort(int[] list) {
        radixSort(list, 0, list.length - 1, 3);
        return list;
    }

    // 打印完整序列
    public void printAll(int[] list) {
        for (int value : list) {
            System.out.print(value + "\t");
        }
        System.out.println();
    }

    public static void main(String[] args) {
        int[] array = { 50, 123, 543, 187, 49, 30, 0, 2, 11, 100 };
        RadixSort radix = new RadixSort();
        System.out.print("排序前:\t\t");
        radix.printAll(array);
        radix.sort(array);
        System.out.print("排序后:\t\t");
        radix.printAll(array);
    }

}
技术分享

原理类似桶排序,这里总是需要10个桶,多次使用

首先以个位数的值进行装桶,即个位数为1则放入1号桶,为9则放入9号桶,暂时忽视十位数

例如

待排序数组[62,14,59,88,16]简单点五个数字

分配10个桶,桶编号为0-9,以个位数数字为桶编号依次入桶,变成下边这样

|  0  |  0  | 62 |  0  | 14 |  0  | 16 |  0  |  88 | 59 |

|  0  |  1  |  2  |  3  |  4 |  5  |  6  |  7  |  8  |  9  |桶编号

将桶里的数字顺序取出来,

输出结果:[62,14,16,88,59]

再次入桶,不过这次以十位数的数字为准,进入相应的桶,变成下边这样:

由于前边做了个位数的排序,所以当十位数相等时,个位数字是由小到大的顺序入桶的,就是说,入完桶还是有序

|  0  | 14,16 |  0  |  0  |  0  | 59 | 62  | 0  | 88  |  0  |

|  0  |  1      |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |桶编号

 

因为没有大过100的数字,没有百位数,所以到这排序完毕,顺序取出即可

最后输出结果:[14,16,59,62,88]

代码仅供参考

技术分享
        /// <summary>
        /// 基数排序
        /// 约定:待排数字中没有0,如果某桶内数字为0则表示该桶未被使用,输出时跳过即可
/// </summary>
        /// <param name="unsorted">待排数组</param>
        /// <param name="array_x">桶数组第一维长度</param>
        /// <param name="array_y">桶数组第二维长度</param>
        static void radix_sort(int[] unsorted, int array_x = 10, int array_y = 100)
        {
            for (int i = 0; i < array_x/* 最大数字不超过999999999...(array_x个9) */; i++)
            {
                int[,] bucket = new int[array_x, array_y];
                foreach (var item in unsorted)
                {
                    int temp = (item / (int)Math.Pow(10, i)) % 10;
                    for (int l = 0; l < array_y; l++)
                    {
                        if (bucket[temp, l] == 0)
                        {
                            bucket[temp, l] = item;
                            break;
                        }
                    }
                }
                for (int o = 0, x = 0; x < array_x; x++)
                {
                    for (int y = 0; y < array_y; y++)
                    {
                        if (bucket[x, y] == 0) continue;
                        unsorted[o++] = bucket[x, y];
                    }
                }
            }
        }

        static void Main(string[] args)
        {
            int[] x = { 999999999, 65, 24, 47, 13, 50, 92, 88, 66, 33, 22445, 10001, 624159, 624158, 624155501 };
            radix_sort(x);
            foreach (var item in x)
            {
                if (item > 0)
                    Console.WriteLine(item + ",");
            }
            Console.ReadLine();
        }
技术分享

 

算法分析

基数排序的性能

排序类别 排序方法 时间复杂度 空间复杂度 稳定性 复杂性
平均情况 最坏情况 最好情况
基数排序 基数排序 O(d(n+r)) O(d(n+r)) O(d(n+r)) O(n+r) 稳定 较复杂

 

时间复杂度

通过上文可知,假设在基数排序中,r为基数,d为位数。则基数排序的时间复杂度为O(d(n+r))

我们可以看出,基数排序的效率和初始序列是否有序没有关联。

空间复杂度

在基数排序过程中,对于任何位数上的基数进行“装桶”操作时,都需要n+r个临时空间。

算法稳定性

在基数排序过程中,每次都是将当前位数上相同数值的元素统一“装桶”,并不需要交换位置。所以基数排序是稳定的算法。

基数排序

标签:

原文地址:http://www.cnblogs.com/nxxshxf/p/5151422.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!