标签:
在当今这个App泛滥的时代,网络请求几乎是每一个App必不可少的一部分,请求几乎遍布App的每一个界面中。我们进入A界面后,App发起了一系列请求,这时候假如还有一部分请求没有被执行,我们就进入B界面开始新的网络请求,这时候原来A界面的网络请求我们有两个选择:
对于第一种情况,我们很好做到,在Activity的onDestroy回调中取消该界面中所有请求,这里需要明确一点,本篇文章的网络层是OkHttp,既然选择了OkHttp,如果要在onDestroy中取消未开始执行以及已经开始执行的网络请求,就必须给每一个请求设置一个tag,然后通过该tag来需要网络请求。比较明智的做法是以该Activity的上下文的hash值作为tag。取消请求时将hash值传入,则该界面所有的请求都可以取消。
但是实际情况并非如此,有一部分网络请求我们不想取消它,仍然想要进行请求,因为这部分的请求比较重要,需要拉到客户端进行使用,取消这个请求可能会带来不必要的麻烦,因此,我们需要保留这些请求。但是我们进入了一个新的界面,新界面的网络优先级比较高,应该先被执行,这就是第二种情况。
每种情况有对应的解决方法,第一种情况显得比较简单,我们先来实现它。
public class MainActivity extends AppCompatActivity implements View.OnClickListener {
private Button btn1;
private Button btn2;
private OkHttpClient mOkHttpClient;
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
btn1 = (Button) findViewById(R.id.btn1);
btn2 = (Button) findViewById(R.id.btn2);
btn1.setOnClickListener(this);
btn2.setOnClickListener(this);
mOkHttpClient = new OkHttpClient();
}
@Override
protected void onDestroy() {
super.onDestroy();
Log.e("TAG", "onDestroy");
cancelByTag(this.hashCode());
}
@Override
public void onClick(View v) {
switch (v.getId()) {
case R.id.btn1:
sendRequest();
break;
case R.id.btn2:
startActivity(new Intent(this, SecondActivity.class));
finish();
break;
}
}
private void sendRequest() {
Request.Builder builder = new Request.Builder();
builder.url("https://www.baidu.com").tag(this.hashCode());
Request request1 = builder.build();
Request request2 = builder.build();
Request request3 = builder.build();
Request request4 = builder.build();
Request request5 = builder.build();
Request request6 = builder.build();
Request request7 = builder.build();
Request request8 = builder.build();
Request request9 = builder.build();
Request request10 = builder.build();
final Call call1 = mOkHttpClient.newCall(request1);
final Call call2 = mOkHttpClient.newCall(request2);
final Call call3 = mOkHttpClient.newCall(request3);
final Call call4 = mOkHttpClient.newCall(request4);
final Call call5 = mOkHttpClient.newCall(request5);
final Call call6 = mOkHttpClient.newCall(request6);
final Call call7 = mOkHttpClient.newCall(request7);
final Call call8 = mOkHttpClient.newCall(request8);
final Call call9 = mOkHttpClient.newCall(request9);
final Call call10 = mOkHttpClient.newCall(request10);
final Callback callback = new Callback() {
@Override
public void onFailure(Call call, IOException e) {
Log.e("TAG", "failure. isCanceled:" + call.isCanceled() + " isExecuted:" + call.isExecuted());
}
@Override
public void onResponse(Call call, Response response) throws IOException {
Log.e("TAG", "success. isCanceled:" + call.isCanceled() + " isExecuted:" + call.isExecuted());
}
};
call1.enqueue(callback);
call2.enqueue(callback);
call3.enqueue(callback);
call4.enqueue(callback);
call5.enqueue(callback);
call6.enqueue(callback);
call7.enqueue(callback);
call8.enqueue(callback);
call9.enqueue(callback);
call10.enqueue(callback);
}
public void cancelByTag(Object tag) {
for (Call call : mOkHttpClient.dispatcher().queuedCalls()) {
if (tag.equals(call.request().tag())) {
call.cancel();
}
}
for (Call call : mOkHttpClient.dispatcher().runningCalls()) {
if (tag.equals(call.request().tag())) {
call.cancel();
}
}
}
}
当我们点击发送请求的按钮之后,所有请求都被设置了一个tag后发送出去,然后我们需要快速的点击跳转按钮,让当前页面finish掉,之后就会回调onDestroy方法,onDestyoy方法中我们调用了取消请求的方法,如果还有请求没有开始执行,该请求就会被取消掉。这样,第一种情况就简单的实现了下。
在实现第二种情况的时候,我们需要知道一个概念,就是一个集合中如何对元素进行排序,通常,有两种做法。
假如现在我们有一个类叫Person,它有两个属性,name和age,我们有一个List,里面都是Person,我们希望对这个List进行排序,并且排序的原则是根据age从小到大排序。按照实现Comparable接口的方法,我们需要将Person实现该接口,就像这样子。
public class Person implements Comparable<Person>{
private String name;
private int age;
public Person(String name, int age) {
this.name = name;
this.age = age;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public int getAge() {
return age;
}
public void setAge(int age) {
this.age = age;
}
@Override
public String toString() {
return "Person{" +
"name=‘" + name + ‘\‘‘ +
", age=" + age +
‘}‘;
}
@Override
public int compareTo(Person another) {
return this.age-another.age;
}
}
这时候我们生成一个都是Person实例的List,调用sort方法进行排序看下结果如何
Person p1=new Person("张三",23);
Person p2=new Person("李四",12);
Person p3=new Person("王五",21);
Person p4=new Person("赵六",8);
Person p5=new Person("钱七",40);
List<Person> persons = Arrays.asList(p1, p2, p3, p4, p5);
System.out.println(persons);
Collections.sort(persons);
System.out.println(persons);
输出结果如下
[Person{name=’张三’, age=23}, Person{name=’李四’, age=12}, Person{name=’王五’, age=21}, Person{name=’赵六’, age=8}, Person{name=’钱七’, age=40}]
[Person{name=’赵六’, age=8}, Person{name=’李四’, age=12}, Person{name=’王五’, age=21}, Person{name=’张三’, age=23}, Person{name=’钱七’, age=40}]
可以看到按age进行排序,并且从小到大的排了顺序,那么如果要从大到小排序呢,很简单,修改compareTo方法即可
@Override
public int compareTo(Person another) {
return another.age-this.age;
}
如果实现Comparator接口,那么我们无需改动Person类,最原始的Person类如下
public class Person{
private String name;
private int age;
public Person(String name, int age) {
this.name = name;
this.age = age;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public int getAge() {
return age;
}
public void setAge(int age) {
this.age = age;
}
@Override
public String toString() {
return "Person{" +
"name=‘" + name + ‘\‘‘ +
", age=" + age +
‘}‘;
}
}
取而代之的方法便是新建一个类实现Comparator接口
public class PersonComparator implements Comparator<Person> {
@Override
public int compare(Person person1, Person person2) {
return person1.getAge()-person2.getAge();
}
}
在进行排序的时候将比较器传入即可。
Person p1=new Person("张三",23);
Person p2=new Person("李四",12);
Person p3=new Person("王五",21);
Person p4=new Person("赵六",8);
Person p5=new Person("钱七",40);
List<Person> persons = Arrays.asList(p1, p2, p3, p4, p5);
System.out.println(persons);
Collections.sort(persons,new PersonComparator());
System.out.println(persons);
知道了如何比较一个类并进行排序后,我们开始我们的正式内容,让okhttp支持优先级调度,也就是文章开头的第二种情况。B界面的网络请求比A界面的网络请求优先级要高,因此我们应该有一个变量来代表这种优先级。然后我们需要根据该优先级进行排序。
很遗憾的是Okhttp默认是不支持优先级调度的,我们不得不修改OkHttp底层的源码进行扩展支持,但这又是万不得已的。
在RealCall这个类里面,有一个内部类AsyncCall,所有异步执行的网络请求最终都会被包装成这一个类型。OkHttpClient中的newCall将Request对象包装成RealCall,而RealCall中的enqueue则将自己转换成一个AsyncCall对象进行异步执行,AsyncCall是Runnale对象的间接子类。因此,我们代表优先级的变量应该存储在AsyncCall这个类中,也就是priority。
final class AsyncCall extends NamedRunnable{
//other field
private int priority;
private AsyncCall(Callback responseCallback, boolean forWebSocket) {
super("OkHttp %s", originalRequest.url().toString());
//other field
this.priority = originalRequest.priority();
}
int priority() {
return originalRequest.priority();
}
//other method
}
同样的,我们需要在Request中暴露这个优先级的变量,即priority
public final class Request {
//other field
private final int priority;
private Request(Builder builder) {
//other field
this.priority=builder.priority;
}
public int priority(){
return priority;
}
//other method
public static class Builder {
//ohther field
private int priority;
private Builder(Request request) {
//other field
this.priority=request.priority;
}
public Builder priority(int priority){
this.priority=priority;
return this;
}
//other method
}
}
之后我们需要实现一个比较器,根据优先级由大到小进行排序
public class AsycCallComparator<T> implements Comparator<T> {
@Override
public int compare(T object1, T object2) {
if ((object1 instanceof RealCall.AsyncCall)
&& (object2 instanceof RealCall.AsyncCall)) {
RealCall.AsyncCall task1 = (RealCall.AsyncCall) object1;
RealCall.AsyncCall task2 = (RealCall.AsyncCall) object2;
int result = task2.priority()
- task1.priority();
return result;
}
return 0;
}
然后,OkHttp内部有一个Dispatcher分发器,分发器内部有一个ExecutorService,ExecutorService是可以自己进行配置,然后变成可以根据优先级调度的,默认的分发器是使用SynchronousQueue进行调度,我们需要将它改成优先队列,将原来的新建对象注释掉,替换成我们的优先队列,优先队列的创建需要传入一个比较器,也就是刚才我们创建的那个比较器。
下面这个方法就是Dispatcher中设置线程池的方法
public synchronized ExecutorService executorService() {
if (executorService == null) {
// executorService = new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60, TimeUnit.SECONDS,
// new SynchronousQueue<Runnable>(), Util.threadFactory("OkHttp Dispatcher", false));
executorService = new ThreadPoolExecutor(4, Integer.MAX_VALUE, 60, TimeUnit.SECONDS,
new PriorityBlockingQueue<Runnable>(60, new AsycCallComparator<Runnable>()), Util.threadFactory("OkHttp Dispatcher", false));
}
return executorService;
}
之后我们模拟发送10个不同优先级的请求,并且优先级是乱序的,控制台则会输出
14===Response{protocol=http/1.1, code=200, message=OK, url=https://www.baidu.com/}
500===Response{protocol=http/1.1, code=200, message=OK, url=https://www.baidu.com/}
100===Response{protocol=http/1.1, code=200, message=OK, url=https://www.baidu.com/}
40===Response{protocol=http/1.1, code=200, message=OK, url=https://www.baidu.com/}
34===Response{protocol=http/1.1, code=200, message=OK, url=https://www.baidu.com/}
30===Response{protocol=http/1.1, code=200, message=OK, url=https://www.baidu.com/}
20===Response{protocol=http/1.1, code=200, message=OK, url=https://www.baidu.com/}
10===Response{protocol=http/1.1, code=200, message=OK, url=https://www.baidu.com/}
5===Response{protocol=http/1.1, code=200, message=OK, url=https://www.baidu.com/}
2===Response{protocol=http/1.1, code=200, message=OK, url=https://www.baidu.com/}
很明显的看到除了第一个请求外,其他请求是一个有序的优先队列。
这只是一个简单的实现参考,具体实现方案还得看你自己的需求。
这样是扩展了OkHttp支持优先级调度,但是最终还是通过修改底源码实现,虽然修改的代码不多,但也是修改,在不到万不得已的情况下,还是建议不要这么干。
我将修改后的OkHttp源码放到了Github上,有兴趣的可以下过来进行参考。
标签:
原文地址:http://blog.csdn.net/sbsujjbcy/article/details/50574981