码迷,mamicode.com
首页 > 编程语言 > 详细

快速幂算法

时间:2016-01-25 16:24:24      阅读:207      评论:0      收藏:0      [点我收藏+]

标签:

2016.1.25 我的第一篇随笔

 

 

在计算形如ab的运算时,如果用朴素的算法需要O(b)的时间复杂度,当b很大时显然是不可取的,于是我们希望找到一种快速的算法来计算,尤其是题目中要求答案取模时。

对于朴素的算法我们有

ans=1;

for(int i=1;i<=b;i++) (ans*=a)%=mod;

我们可以简单优化一下,在循环之前加入a%=mod;

 

当b为偶数时我们可以这样

ans=1;

for(int i=1;i<=b/2;i++) (ans*=a)%=mod;

(ans*=ans)%=mod;

当b为奇数时需要特判

ans=1;

for(int i=1;i<=b/2;i++) (ans*=a)%=mod;

(ans*=ans)%=mod;

if(b&1) (ans*=a)%=mod;

这样做可以将时间减半。

 

我们甚至可以这样

ans=1;

for(int i=1;i<=b/4;i++)

{

      (ans*=a)%=mod;

}

(ans*=ans)%=mod;

(ans*=ans)%=mod;

if(b&1) (ans*=a)%=mod;

if( (b/2) &1) (ans*=a*a)%=mod;

 

那么我们自然会想到,如果时间可以减半,减半,再减半,那么时间复杂度可以降到O(log n).

实现方法也很简单,就是把上述步骤迭代多次。

代码如下:

技术分享
int ans=1;
a%=mod;
while(b)
{
    if(b&1) (ans*=a)%=mod;
    b/=2;//可以知道任何一个大于1的数经历多次这步均可以达到b=1,所以不用担心ans最后得不到a的值
    (a*=a)%=mod;
} 
View Code

 

快速幂算法

标签:

原文地址:http://www.cnblogs.com/16er/p/5157374.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!