标签:
matrix.c
#include <stdio.h> #include <stdlib.h> #include <stdbool.h> #include <limits.h> #include "aqueue.h" #define MAX_VALUE INT_MAX #define MAX_NUM 100 typedef char node_type; typedef struct matrix { node_type vertex[MAX_NUM];//节点信息 int arcs[MAX_NUM][MAX_NUM];//矩阵 int vertexs, brim;//节点数,边数 } Graph; void g_create(Graph * graph) { int num; int i, j, k; char c; printf("输入节点个数:"); scanf("%d", &graph->vertexs); getchar();//接受回车键 printf("输入节点信息:"); for ( i = 0; i < graph->vertexs; i++ ) { scanf("%c", &graph->vertex[i]); getchar(); } for ( i = 0; i < graph->vertexs; i++ )//初始化矩阵 for ( j = 0; j < graph->vertexs; j++ ) graph->arcs[i][j] = MAX_VALUE; graph->brim = 0;//初始化边数 // i 代表行数, j 是用来循环的, k 代表列数 for ( i = 0; i < graph->vertexs; i++ ) { printf("输入与%c节点相邻的节点与权值,输入#号键结束\n", graph->vertex[i]); for ( j = 0; j < graph->vertexs; j++ ) { scanf("%c", &c); if ( c == ‘#‘ ) { getchar(); break; } scanf("%d", &num); for ( k = 0; k < graph->vertexs; k++ ) { if ( graph->vertex[k] != c ) continue; graph->arcs[i][k] = num; graph->brim++; } getchar(); } } graph->brim /= 2; } void g_printMatrix(Graph * graph)//打印矩阵状态 { int i, j; printf("brim = %d\n", graph->brim); for ( i = 0; i < graph->vertexs; i++ ) { for ( j = 0; j < graph->vertexs; j++ ) { printf("%-10d ", graph->arcs[i][j]); } printf("\n"); } } //深度优先遍历 static void dfs_graph(Graph * graph, bool visited[], const int i); void g_depth_first_search(Graph * graph) { bool visited[graph->vertexs]; int i; for ( i = 0; i < graph->vertexs; i++ ) visited[i] = false; visited[0] = true; dfs_graph(graph, visited, 0); printf("\n"); } static void dfs_graph(Graph * graph, bool visited[], const int i) { int j; printf("%c\t", graph->vertex[i]); for ( j = 0; j < graph->vertexs; j++ )//依次检查矩阵 { if ( graph->arcs[i][j] != MAX_VALUE && !visited[j] )//i 代表矩阵的行, j 代表矩阵的列 { visited[j] = true; dfs_graph(graph, visited, j); } } } //广度优先遍历 void g_breadth_first_search(Graph * graph) { Queue queue;//队列存储的是节点数组的下标(int) bool visited[graph->vertexs]; int i, pos; q_init(&queue); for ( i = 0; i < graph->vertexs; i++ ) visited[i] = false; visited[0] = true; q_push(&queue, 0); while ( !q_empty(&queue) ) { pos = q_front(&queue); printf("%c\t", graph->vertex[pos]); for ( i = 0; i < graph->vertexs; i++ )//把队头元素的邻接点入队 { if ( !visited[i] && graph->arcs[pos][i] != MAX_VALUE ) { visited[i] = true; q_push(&queue, i); } } q_pop(&queue); } printf("\n"); } //最小生成树prim算法 static void init_prim(Graph * graph, Graph * prim_tree); void Prim(Graph * graph, Graph * prim_tree) { bool visited[graph->vertexs]; int i, j, k, h; int power, power_j, power_k; for ( i = 0; i < graph->vertexs; i++ ) visited[i] = false; init_prim(graph, prim_tree); visited[0] = true; for ( i = 0; i < graph->vertexs; i++ ) { power = MAX_VALUE; for ( j = 0; j < graph->vertexs; j++ ) { if ( visited[j] ) { for ( k = 0; k < graph->vertexs; k++ ) { if ( power > graph->arcs[j][k] && !visited[k] ) { power = graph->arcs[j][k]; power_j = j; power_k = k; } } } } //min power if ( !visited[power_k] ) { visited[power_k] = true; prim_tree->arcs[power_j][power_k] = power; } } } static void init_prim(Graph * graph, Graph * prim_tree) { int i, j; prim_tree->vertexs = graph->vertexs; for ( i = 0; i < prim_tree->vertexs; i++ )//初始化节点 prim_tree->vertex[i] = graph->vertex[i]; for ( i = 0 ; i < prim_tree->vertexs; i++ )//初始化矩阵 { for ( j = 0; j < prim_tree->vertexs; j++ ) { prim_tree->arcs[i][j] = MAX_VALUE; } } } //最小生成树kruskal算法 typedef struct { int head;//边的始点下标 int tail;//边的终点下标 int power;//边的权值 } Edge; static void init_kruskal(Graph * graph, Graph * kruskal_tree); static void my_sort(Edge * arr, int size); void kruskal(Graph * graph, Graph * kruskal_tree) { int visited[graph->vertexs]; Edge edge[graph->brim]; int i, j, k; int v1, v2, vs1, vs2; for ( i = 0; i < graph->vertexs; i++ ) visited[i] = i; k = 0; for ( i = 0; i < graph->vertexs; i++ ) { for ( j = i + 1; j < graph->vertexs; j++ ) { if ( graph->arcs[i][j] != MAX_VALUE ) { edge[k].head = i; edge[k].tail = j; edge[k].power = graph->arcs[i][j]; k++; } } } init_kruskal(graph, kruskal_tree); my_sort(edge, graph->brim); for ( i = 0; i < graph->brim; i++ ) { v1 = edge[i].head; v2 = edge[i].tail; vs1 = visited[v1]; vs2 = visited[v2]; if ( vs1 != vs2 ) { kruskal_tree->arcs[v1][v2] = graph->arcs[v1][v2]; for ( j = 0; j < graph->vertexs; j++ ) { if ( visited[j] == vs2 ) visited[j] = vs1; } } } } static void init_kruskal(Graph * graph, Graph * kruskal_tree) { int i, j; kruskal_tree->vertexs = graph->vertexs; kruskal_tree->brim = graph->brim; for ( i = 0; i < graph->vertexs; i++ ) kruskal_tree->vertex[i] = graph->vertex[i]; for ( i = 0; i < graph->vertexs; i++ ) for ( j = 0; j < graph->vertexs; j++ ) kruskal_tree->arcs[i][j] = MAX_VALUE; } static void my_sort(Edge * arr, int size) { int i, j; Edge tmp; for ( i = 0; i < size - 1; i++ ) { for ( j = i + 1; j < size; j++ ) { if ( arr[i].power > arr[j].power ) { tmp.head = arr[i].head; tmp.tail = arr[i].tail; tmp.power = arr[i].power; arr[i].head = arr[j].head; arr[i].tail = arr[j].tail; arr[i].power = arr[j].power; arr[j].head = tmp.head; arr[j].tail = tmp.tail; arr[j].power = tmp.power; } } } } int main(void) { Graph graph; Graph prim_tree; Graph kruskal_tree; g_create(&graph); g_printMatrix(&graph); // printf("\n"); // g_depth_first_search(&graph); // g_breadth_first_search(&graph); // // Prim(&graph, &prim_tree); // g_printMatrix(&prim_tree); // g_depth_first_search(&prim_tree); // g_breadth_first_search(&prim_tree); kruskal(&graph, &kruskal_tree); g_printMatrix(&kruskal_tree); return 0; }
aqueue.h
#ifndef _QUEUE_H #define _QUEUE_H #define MAXSIZE 10 typedef struct queue { int * arr; int front; int rear; } Queue; void q_init(Queue * queue);//初始化 void q_push(Queue * queue, const int data);//入队 void q_pop(Queue * queue);//出队 bool q_empty(Queue * queue);//为空 bool q_full(Queue * queue);//为满 int q_size(Queue * queue);//队大小 int q_front(Queue * queue);//队头元素 int q_back(Queue * queue);//队尾元素 void q_destroy(Queue * queue);//销毁 #endif //_QUEUE_h
aqueue.c
#include <stdio.h> #include <stdlib.h> #include <assert.h> #include <stdbool.h> #include "aqueue.h" void q_init(Queue * queue) { queue->arr = (int *)malloc( sizeof(int) * MAXSIZE );//初始化数组 assert(queue->arr != NULL); queue->front = 0; queue->rear = 0; } void q_push(Queue * queue, const int data) { if ( q_full(queue) ) return; queue->arr[queue->rear++] = data;//入队,队尾+1 queue->rear = queue->rear % MAXSIZE;//如果队尾 } void q_pop(Queue * queue) { if ( q_empty(queue) ) return; queue->front = ++queue->front % MAXSIZE;//front+1,对MAXSIZE取余 } bool q_empty(Queue * queue) { return queue->front == queue->rear; } bool q_full(Queue * queue) { return queue->front == (queue->rear + 1) % MAXSIZE; } int q_size(Queue * queue) { return (queue->rear - queue->front) % MAXSIZE; } int q_front(Queue * queue) { assert( !q_empty(queue) ); return queue->arr[queue->front]; } int q_back(Queue * queue) { assert( !q_empty(queue) ); return queue->arr[queue->rear - 1]; } void q_destroy(Queue * queue) { free(queue->arr); }
邻接矩阵c源码(构造邻接矩阵,深度优先遍历,广度优先遍历,最小生成树prim,kruskal算法)
标签:
原文地址:http://www.cnblogs.com/ITgaozy/p/5200637.html