标签:
接上文《深入浅出Java并发包—锁机制(二) 》
由锁衍生的下一个对象是条件变量,这个对象的存在很大程度上是为了解决Object.wait/notify/notifyAll难以使用的问题。
条件(也称为条件队列 或条件变量)为线程提供了一个含义,以便在某个状态条件现在可能为 true 的另一个线程通知它之前,一直挂起该线程(即让其“等待”)。因为访问此共享状态信息发生在不同的线程中,所以它必须受保护,因此要将某种形式的锁与该条件相关联。等待提供一个条件的主要属性是:以原子方式 释放相关的锁,并挂起当前线程,就像 Object.wait 做的那样。
上述API说明表明条件变量需要与锁绑定,而且多个Condition需要绑定到同一锁上。前面的Lock中提到,获取一个条件变量的方法是Lock.newCondition()。
Condition 将 Object 监视器方法(wait、notify 和 notifyAll)分解成截然不同的对象,以便通过将这些对象与任意 Lock 实现组合使用,为每个对象提供多个等待 set(wait-set)。其中,Lock 替代了 synchronized 方法和语句的使用,Condition 替代了 Object 监视器方法的使用。await对应于Object.wait,signal对应于Object.notify,signalAll对应于Object.notifyAll。特别说明的是Condition的接口改变名称就是为了避免与Object中的wait/notify/notifyAll的语义和使用上混淆,因为Condition同样有wait/notify/notifyAll方法。
每一个Lock可以有任意数据的Condition对象,Condition是与Lock绑定的,所以就有Lock的公平性特性:如果是公平锁,线程为按照FIFO的顺序从Condition.await中释放,如果是非公平锁,那么后续的锁竞争就不保证FIFO顺序了。我们通过一个生产者消费者模型来看一下相关的实现!
package com.yhj.lock; import java.util.concurrent.locks.Condition; import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReentrantLock; /** * @Described 生产者消费者模型 * @Author YHJ create at 2013-6-6 下午09:15:27 */ public class ProductQueue<T> { private final T[] items; //队列存储区 private final Lock lock = new ReentrantLock(); //独占锁 private Condition notFull = lock.newCondition(); //条件 private Condition notEmpty = lock.newCondition(); private int head, tail, count; //下标 @SuppressWarnings("unchecked") public ProductQueue(int maxSize) { items = (T[]) new Object[maxSize]; } /** * 默认10个元素 * @Constructors * @Author YHJ create at 2013-6-6 下午09:15:21 */ public ProductQueue() { this(10); } /** * 放置数据 * @param t * @throws InterruptedException * @Author YHJ create at 2013-6-6 下午09:15:27 */ public void put(T t) throws InterruptedException { lock.lock(); try { while (count == getCapacity()) { notFull.await(); } items[tail] = t; if (++tail == getCapacity()) { tail = 0; } ++count; notEmpty.signalAll(); } finally { lock.unlock(); } } /** * 取数据 * @return * @throws InterruptedException * @Author YHJ create at 2013-6-6 下午09:18:36 */ public T take() throws InterruptedException { lock.lock(); try { while (count == 0) { notEmpty.await(); } T ret = items[head]; items[head] = null;//GC if (++head == getCapacity()) { head = 0; } --count; notFull.signalAll(); return ret; } finally { lock.unlock(); } } /** * 获取容量(队列) * @return * @Author YHJ create at 2013-6-6 下午09:18:45 */ public int getCapacity() { return items.length; } /** * 获取元素数目 * @return * @Author YHJ create at 2013-6-6 下午09:19:04 */ public int size() { lock.lock(); try { return count; } finally { lock.unlock(); } } }
在这个例子中消费take()需要 队列不为空,如果为空就挂起(await()),直到收到notEmpty的信号;生产put()需要队列不满,如果满了就挂起(await()),直到收到notFull的信号。可能有人会问:如果一个线程lock()对象后被挂起还没有unlock,那么另外一个线程就拿不到锁了(lock()操作会挂起),那么就无法通知(notify)前一个线程,这样岂不是“死锁”了?
是这样子么?当然不是,如果是这样有这么大的问题,锁性能再好又有什么用呢?我们来看下await方法的代码:
public final void await() throws InterruptedException { if (Thread.interrupted()) throw new InterruptedException(); Node node = addConditionWaiter(); long savedState = fullyRelease(node); int interruptMode = 0; while (!isOnSyncQueue(node)) { LockSupport.park(this); if ((interruptMode = checkInterruptWhileWaiting(node)) != 0) break; } if (acquireQueued(node, savedState) && interruptMode != THROW_IE) interruptMode = REINTERRUPT; if (node.nextWaiter != null) unlinkCancelledWaiters(); if (interruptMode != 0) reportInterruptAfterWait(interruptMode); } final boolean isOnSyncQueue(Node node) { if (node.waitStatus == Node.CONDITION || node.prev == null) return false; if (node.next != null) // If has successor, it must be on queue return true; return findNodeFromTail(node); }
很显然,执行await方法的时候,首先将当前节点加入Condition队列,然后会做一次锁的释放(如果不释放其他线程就会等待而无法获取锁,进而更没有办法notify此条件,引发死锁),然后自旋尝试挂起当前线程(LockSupport.park(this);),直到有线程condition的signal来解除(被唤醒继续操作或被取消,如果被取消则直接剔除),如果被唤醒而且没有被取消的话,尝试重新进入锁获取的等待队列(acquireQueued(node, savedState)),尝试成功后从Condition队列中删除(再次拿到了之前的锁对象)!
这里再回头介绍Condition的数据结构。我们知道一个Condition可以在多个地方被await(),那么就需要一个FIFO的结构将这些Condition串联起来,然后根据需要唤醒一个或者多个(通常是所有)。所以在Condition内部就需要一个FIFO的队列。我们再结合前面提到的节点(Node)数据结构。我们就发现Node.nextWaiter就派上用场了!nextWaiter就是将一系列的Condition.await()串联起来组成一个FIFO的队列。所以当某一个节点被唤醒的时候,需要进行一次队列关系重建(unlinkCancelledWaiters())。
await()清楚了,现在再来看signal/signalAll就容易多了。按照signal/signalAll的需求,就是要将Condition.await()中FIFO队列中第一个Node/全部Node唤醒。尽管所有Node可能都被唤醒,但是要知道的是仍然只有一个线程能够拿到锁,其它没有拿到锁的线程仍然需要自旋等待(acquireQueued)。我们来看下相关的代码实现:
public final void signal() { if (!isHeldExclusively()) throw new IllegalMonitorStateException(); Node first = firstWaiter; if (first != null) doSignal(first); }
private void doSignal(Node first) { do { if ( (firstWaiter = first.nextWaiter) == null) lastWaiter = null; first.nextWaiter = null; } while (!transferForSignal(first) && (first = firstWaiter) != null); }
public final void signalAll() { if (!isHeldExclusively()) throw new IllegalMonitorStateException(); Node first = firstWaiter; if (first != null) doSignalAll(first); }
private void doSignalAll(Node first) { lastWaiter = firstWaiter = null; do { Node next = first.nextWaiter; first.nextWaiter = null; transferForSignal(first); first = next; } while (first != null); }
上面的代码很容易看出来,signal就是唤醒Condition队列中的第一个非CANCELLED节点线程,而signalAll就是唤醒所有非CANCELLED节点线程。当然了遇到CANCELLED线程就需要将其从FIFO队列中剔除。
final boolean transferForSignal(Node node) { /* * If cannot change waitStatus, the node has been cancelled. */ if (!compareAndSetWaitStatus(node, Node.CONDITION, 0)) return false; /* * Splice onto queue and try to set waitStatus of predecessor to * indicate that thread is (probably) waiting. If cancelled or * attempt to set waitStatus fails, wake up to resync (in which * case the waitStatus can be transiently and harmlessly wrong). */ Node p = enq(node); int c = p.waitStatus; if (c > 0 || !compareAndSetWaitStatus(p, c, Node.SIGNAL)) LockSupport.unpark(node.thread); return true; }
上面就是唤醒一个await()线程的过程,根据前面介绍的,如果要unpark线程,并使线程拿到锁,那么就需要线程节点进入AQS的队列。所以可以看到在LockSupport.unpark之前调用了enq(node)操作,将当前节点加入到AQS队列。
标签:
原文地址:http://www.cnblogs.com/longshiyVip/p/5213821.html