标签:
本文地址: http://blog.csdn.net/caroline_wendy
题目: 有一个长为n的数列a. 请求出这个序列中最长上升子序列的长度. 最长上升子序列的数字之间能够有间隔.
即最长上升子序列(LIS, Longest Increasing Subsequence), 比如: n=5, a={4,2,3,1,5}, result=3(2,3,5).
使用动态规划求解(DP).
方法1: 依次求出每一个数字之前的最长上升子序列, 时间复杂度O(n^2).
方法2: 求取针对最末位的元素的最长子序列, 使用较小的元素更新数组, 应用二分搜索查找元素, 时间复杂度(nlogn).
代码:
/* * main.cpp * * Created on: 2014.7.20 * Author: Spike */ /*eclipse cdt, gcc 4.8.1*/ #include <stdio.h> /* * main.cpp * * Created on: 2014.7.20 * Author: spike */ /*eclipse cdt, gcc 4.8.1*/ #include <stdio.h> #include <memory.h> #include <limits.h> #include <algorithm> using namespace std; class Program { static const int MAX_N = 100; const int INF = INT_MAX>>2; int n = 5; int a[MAX_N] = {4, 2, 3, 1, 5}; int dp[MAX_N]; public: void solve() { int res = 0; for (int i=0; i<n; ++i) { dp[i] = 1; for (int j=0; j<i; ++j) { if (a[j]<a[i]){ dp[i] = max(dp[i], dp[j]+1); } } res = max(res, dp[i]); } printf("result = %d\n", res); } void solve2() { fill(dp, dp+n, INF); for (int i=0; i<n; i++) { *lower_bound(dp, dp+n, a[i]) = a[i]; } printf("result = %d\n", lower_bound(dp, dp+n, INF)-dp); } }; int main(void) { Program iP; iP.solve2(); return 0; }
result = 3
标签:
原文地址:http://www.cnblogs.com/lcchuguo/p/5224068.html