码迷,mamicode.com
首页 > 编程语言 > 详细

Java中的Collection和Map(五)--PriorityQueue

时间:2016-03-02 12:53:59      阅读:237      评论:0      收藏:0      [点我收藏+]

标签:

  PriorityQueue java api给出的定义:

  一个基于优先级堆的无界优先级队列。优先级队列的元素按照其自然顺序进行排序,或者根据构造队列时提供的 Comparator 进行排序,具体取决于所使用的构造方法。优先级队列不允许使用 null 元素。依靠自然顺序的优先级队列还不允许插入不可比较的对象(这样做可能导致 ClassCastException)。

  此队列的 是按指定排序方式确定的最小 元素。如果多个元素都是最小值,则头是其中一个元素——选择方法是任意的。队列获取操作 pollremovepeekelement 访问处于队列头的元素。

  优先级队列是无界的,但是有一个内部容量,控制着用于存储队列元素的数组大小。它通常至少等于队列的大小。随着不断向优先级队列添加元素,其容量会自动增加。无需指定容量增加策略的细节。

  此类及其迭代器实现了 CollectionIterator 接口的所有可选 方法。方法 iterator() 中提供的迭代器 保证以任何特定的顺序遍历优先级队列中的元素。如果需要按顺序遍历,请考虑使用 Arrays.sort(pq.toArray())

注意,此实现不是同步的。如果多个线程中的任意线程修改了队列,则这些线程不应同时访问 PriorityQueue 实例。相反,请使用线程安全的 PriorityBlockingQueue 类。

实现注意事项:此实现为排队和出队方法(offerpollremove()add)提供 O(log(n)) 时间;为 remove(Object)contains(Object) 方法提供线性时间;为获取方法(peekelementsize)提供固定时间。

此类是 Java Collections Framework 的成员。 


 

  在平时的编程工作中似乎很少碰到PriorityQueue(优先队列) ,故很多人一开始看到优先队列的时候还会有点迷惑。优先队列本质上就是一个最小堆。堆是什么呢,我们可以这么理解 他就是一数组,不过满足于特殊的性质。我们以一种完全二叉树的视角去看这个数组,并用二叉树的上下级关系来映射到数组上面。如果是最大堆,则二叉树的顶点是保存的最大值,最小堆则保存的最小值。

  PriorityQueue的构造方法:

  技术分享 

  java 为我们提供了多重构造方法,当我们想PriorityQueue 传递已结合的时候,PriorityQueue 会存在一个调整堆的过程(通过调用heapify () 方法来实现):  

private void heapify() {
        for (int i = (size >>> 1) - 1; i >= 0; i--)
            siftDown(i, (E) queue[i]);
    }

 private void siftDown(int k, E x) {
        if (comparator != null)
            siftDownUsingComparator(k, x);
        else
            siftDownComparable(k, x);
    }

private void siftDownUsingComparator(int k, E x) {
        int half = size >>> 1;
        while (k < half) {
            int child = (k << 1) + 1;
            Object c = queue[child];
            int right = child + 1;
            if (right < size &&
                comparator.compare((E) c, (E) queue[right]) > 0)
                c = queue[child = right];
            if (comparator.compare(x, (E) c) <= 0)
                break;
            queue[k] = c;
            k = child;
        }
        queue[k] = x;
    }

private void siftDownComparable(int k, E x) {
        Comparable<? super E> key = (Comparable<? super E>)x;
        int half = size >>> 1;        // loop while a non-leaf
        while (k < half) {
            int child = (k << 1) + 1; // assume left child is least
            Object c = queue[child];
            int right = child + 1;
            if (right < size &&
                ((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)
                c = queue[child = right];
            if (key.compareTo((E) c) <= 0)
                break;
            queue[k] = c;
            k = child;
        }
        queue[k] = key;
    }

  我们以树的形式来体现 底层数组的调整结构:

  假设我们初始化的时候存在这么一组数据[8,5,7,9,6,1],其对应的树形结构如下:

     技术分享

    第一步调整:

  技术分享

   第二步调整:

  技术分享

  第三步调整:

  技术分享

  按照前面的过程,相信代码就很好理解了。

  PriorityQueue  底层使用 数组来存储数据的,这就跟ArrayList 一样会牵扯到扩容的问题,我们来看下PriorityQueue  是如何扩容的。

private void grow(int minCapacity) {
        int oldCapacity = queue.length;
        // Double size if small; else grow by 50%
        int newCapacity = oldCapacity + ((oldCapacity < 64) ?
                                         (oldCapacity + 2) :
                                         (oldCapacity >> 1));
        // overflow-conscious code
        if (newCapacity - MAX_ARRAY_SIZE > 0)
            newCapacity = hugeCapacity(minCapacity);
        queue = Arrays.copyOf(queue, newCapacity);
    }

    private static int hugeCapacity(int minCapacity) {
        if (minCapacity < 0) // overflow
            throw new OutOfMemoryError();
        return (minCapacity > MAX_ARRAY_SIZE) ?
            Integer.MAX_VALUE :
            MAX_ARRAY_SIZE;
    }

  这部分代码和ArrayList的内部实现代码基本相同,都是先找到合适的数组长度,然后将元素从旧的数组拷贝到新的数组。

  add (E e) 方法:

public boolean add(E e) {
        return offer(e);
    }

public boolean offer(E e) {
        if (e == null)
            throw new NullPointerException();
        modCount++;
        int i = size;
        if (i >= queue.length)
            grow(i + 1);
        size = i + 1;
        if (i == 0)
            queue[0] = e;
        else
            siftUp(i, e);
        return true;
    }

  从这段代码我们可以看出 PriorityQueue  ,不支持null 而且添加时真正的实现是 siftUp 方法:

private void siftUp(int k, E x) {
        if (comparator != null)
            siftUpUsingComparator(k, x);
        else
            siftUpComparable(k, x);
    }

    private void siftUpComparable(int k, E x) {
        Comparable<? super E> key = (Comparable<? super E>) x;
        while (k > 0) {
            int parent = (k - 1) >>> 1;
            Object e = queue[parent];
            if (key.compareTo((E) e) >= 0)
                break;
            queue[k] = e;
            k = parent;
        }
        queue[k] = key;
    }

    private void siftUpUsingComparator(int k, E x) {
        while (k > 0) {
            int parent = (k - 1) >>> 1;
            Object e = queue[parent];
            if (comparator.compare(x, (E) e) >= 0)
                break;
            queue[k] = e;
            k = parent;
        }
        queue[k] = x;
    }

  假如 我们初始化的时候PriorityQueue  是空,我们还用[8,5,7,9,6,1]这些数据,调用PriorityQueue 的add(E e) 方法,我们看一下他们的具体过程。这里还采用树形结构来描述。

  第一次调用add(E e) 方法 e=8,后数据结果为[8];

  第二次调用add(E e) 方法 e=5,后数据结果为[5,8];

  第三次调用add(E e) 方法 e=7,后数据结果为[5,8,7];

    第四次调用add(E e) 方法 e=9,后数据结果为[5,8,7,9];

  第五次调用add(E e) 方法 e=5,后数据结果为[5,6,7,9,8];

    第六次调用add(E e) 方法 e=1,后数据结果为[1,6,5,9,8,7];

  最后的树结构如下:

  技术分享

  注意:们看前面的调整方法不管是siftUp还是siftDown都用了两个方法,一个是用的comparator,还有一个是用的默认比较结果。这样做的目的是考虑到我们要比较的元素不仅仅是数字等类型,也有可能是被定义了可比较的数据类型。对于自定义的数据类型,他们的大小比较定义需要实现comparator接口。

Java中的Collection和Map(五)--PriorityQueue

标签:

原文地址:http://www.cnblogs.com/gaohuiqian/p/5233926.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!