标签:
一.漫水填充算法
该算法通过一个指定的种子点,来分析整张图片上的像素,并设置像素差异阈值,在阈值类的点,最后变成相同的颜色.该方法通过上下限和连通方式来达到不同的连通效果.
该方法常用与标记和分离图像的一部分,以便于对其做进一步的分析和处理,填充的结果总是连通的区域.
API:void floodFill(源图像,掩码,Point 种子点,scaral 染色值,Rect* 重绘区域的最小边界矩形区域,scaral 与种子点颜色的负差最大值,scaral 与种子点颜色的正差最大值,int 操作方式);
注:1掩码的大小和源图像相同,掩码中不为0的区域,对应的原图中坐标的像素,在处理的时候将被忽略.
2.最小矩形是一个可选参数,默认为0
3.操作方式的第八位为4,则连通时只会向水平垂直方向蔓延,为8,还包括对角线蔓延,高八位为FLOOD_FIXED_RANGE时,上下限是和种子点颜色相比,否则,是当前像素和相邻像素差
实际使用代码如下
Mat srcImage; Mat dstImage; Point mousePoint; const int g_newValueMax = 255; int g_newValue; const int g_lodiffMax = 255; int g_lodiffValue; const int g_updiffMax = 255; int g_updiffValue; void onMouseEvent(int eventID,int x,int y,int flag,void* userData); void onTrackBarNewValue(int pos,void* userData); void onTrackBarLoDiffValue(int pos,void* userData); void onTrackBarUpDiffValue(int pos,void* userData); int main(void) { srcImage = imread("F:\\opencv\\OpenCVImage\\floodFill.jpg"); namedWindow("floodfill image"); namedWindow("src image"); mousePoint = Point(-1,-1); g_newValue = 100; g_lodiffValue = 25; g_updiffValue = 25; setMouseCallback("src image", onMouseEvent); createTrackbar("new value", "src image", &g_newValue, g_newValueMax,onTrackBarNewValue); createTrackbar("updiff value", "src image", &g_updiffValue, g_updiffMax,onTrackBarUpDiffValue); createTrackbar("lodiff value", "src image", &g_lodiffValue, g_lodiffMax,onTrackBarLoDiffValue); onTrackBarLoDiffValue(g_lodiffValue, 0); imshow("src image", srcImage); moveWindow("src image", 0, 0); moveWindow("floodfill image", srcImage.cols, 0); waitKey(0); return 0; } void onMouseEvent(int eventID,int x,int y,int flag,void* userData) { if(eventID == EVENT_LBUTTONDOWN) { mousePoint = Point(x,y); onTrackBarNewValue(g_newValue, 0); } } void onTrackBarNewValue(int pos,void* userData) { if(mousePoint.x >= 0 && mousePoint.y >=0) { Rect rect; Mat tempImage; tempImage = srcImage.clone(); floodFill(srcImage, mousePoint, Scalar(g_newValue,g_newValue,g_newValue),&rect,Scalar(g_lodiffValue,g_lodiffValue,g_lodiffValue),Scalar(g_updiffValue,g_updiffValue,g_updiffValue),4|FLOODFILL_FIXED_RANGE); dstImage = srcImage.clone(); srcImage = tempImage.clone(); imshow("floodfill image", dstImage); } else { dstImage = srcImage.clone(); imshow("floodfill image", dstImage); } } void onTrackBarLoDiffValue(int pos,void* userData) { if(mousePoint.x >= 0 && mousePoint.y >=0) { Rect rect; Mat tempImage; tempImage = srcImage.clone(); floodFill(srcImage, mousePoint, Scalar(g_newValue,g_newValue,g_newValue),&rect,Scalar(g_lodiffValue,g_lodiffValue,g_lodiffValue),Scalar(g_updiffValue,g_updiffValue,g_updiffValue),8|FLOODFILL_FIXED_RANGE); dstImage = srcImage.clone(); srcImage = tempImage.clone(); imshow("floodfill image", dstImage); } else { dstImage = srcImage.clone(); imshow("floodfill image", dstImage); } } void onTrackBarUpDiffValue(int pos,void* userData) { if(mousePoint.x >= 0 && mousePoint.y >=0) { Rect rect; Mat tempImage; tempImage = srcImage.clone(); floodFill(srcImage, mousePoint, Scalar(g_newValue,g_newValue,g_newValue),&rect,Scalar(g_lodiffValue,g_lodiffValue,g_lodiffValue),Scalar(g_updiffValue,g_updiffValue,g_updiffValue),8|FLOODFILL_FIXED_RANGE); dstImage = srcImage.clone(); srcImage = tempImage.clone(); imshow("floodfill image", dstImage); } else { dstImage = srcImage.clone(); imshow("floodfill image", dstImage); } }
二.图像金字塔
图像金字塔是一种对图像进行向上采样或者向下采样的算法,所谓向上向下采样,实际上就是放大图像缩小图像.
图像金字塔分为高斯金字塔和拉普拉斯金字塔,高斯金字塔向下采样,降低分辨力,拉普拉斯金字塔配合高斯金字塔,向上还原源图像
下一层图像的面积是源图像面积的1/4,采样函数分别为pyrUp和pyrDown两个函数并不是互逆的,pyrDown是一个会丢失信息的函数.
API:void pyrUp(源图,目的图,Size 放大系数,int 边缘类型)
注:向上采样并放大图像,目的图和源图的通道,深度一致,放大系数有默认值,源图长*2 宽*2
API:void pyrDown(源图,目的图,Size 放大系数,int 边缘类型)
注:向下采样并模糊一张图片,图片尺寸有默认值 源图长/2 源图宽/2,整体是源图的四分之一.
使用例程如下
Mat srcImage; //图像放大 Mat pyrupImage; Mat pyrupShowImage; const int g_pyrupMax = 10; int g_pyrupCount; void onTrackBarPyrup(int pos,void* userData); //图像缩小 Mat pyrdownImage; Mat pyrdownShowImage; const int g_pyrdownMax = 10; int g_pyrdownCount; void onTrackBarPyrdown(int pos,void* userData); int main(int argc,char* argv[]) { srcImage = imread("F:\\opencv\\OpenCVImage\\pyr.jpg"); if(srcImage.empty()) { return -1; } namedWindow("src image"); namedWindow("pyrup image"); namedWindow("pyrdown image"); g_pyrupCount = 1; createTrackbar("pyrup count", "pyrup image", &g_pyrupCount, g_pyrupMax,onTrackBarPyrup,0); onTrackBarPyrup(g_pyrupCount,0); g_pyrdownCount = 1; createTrackbar("pyrdown count", "pyrdown image", &g_pyrdownCount, g_pyrdownMax,onTrackBarPyrdown,0); onTrackBarPyrdown(g_pyrdownCount, 0); imshow("src image", srcImage); moveWindow("src image", 0, 0); moveWindow("pyrup image", srcImage.cols, 0); moveWindow("pyrdown image", srcImage.cols*2, 0); waitKey(0); return 0; } //图像放大 void onTrackBarPyrup(int pos,void* userData) { if(pos == 0) { imshow("pyrup image", srcImage); } else { Mat tempImage; tempImage = srcImage.clone(); for(int i = 0; i < pos; i++) { pyrUp(tempImage, pyrupImage); tempImage = pyrupImage.clone(); } if(pyrupImage.cols > srcImage.cols && pyrupImage.rows > srcImage.rows) { //pyrupShowImage = pyrupImage(Range(0,srcImage.rows),Range(0,srcImage.cols)); imshow("pyrup image", pyrupImage); } else { imshow("pyrup image", pyrupImage); } } } //图像缩小 void onTrackBarPyrdown(int pos,void* userData) { if(pos == 0) { imshow("pyrdown image", srcImage); } else { Mat tempImage; tempImage = srcImage.clone(); for(int i = 0; i < pos; i++) { pyrDown(tempImage, pyrdownImage); tempImage = pyrdownImage.clone(); } if(pyrdownImage.cols > srcImage.cols && pyrdownImage.rows > srcImage.rows) { pyrdownShowImage = pyrdownImage(Range(0,srcImage.rows),Range(0,srcImage.cols)); imshow("pyrdown image", pyrdownShowImage); } else { imshow("pyrdown image", pyrdownImage); } } }
三.图像大小重新调整resize
resize用于将源目标精确的转换为指定大小的目标图像,在图像放大缩小的时候很有用
API: void resize(源,目标,Size 目标尺寸,double x方向缩放系数,double y方向上缩放系数,int 差值方式)
注:x方向缩放系数默认值0,函数自动根据源图像大小和目标尺寸计算,y方向缩放系数也是一样.插值方式决定了放大缩小以后的效果,主要有如下几种插值方法 INTER_LINE 线性插值INTER_NEAREST 最近邻插值 INNER_CUBIC 4*4区域内三次样条插值INNER_AREA 区域插值INNER_LANCZOS4 8*8区域内邻域插值.
插值方式的选择对于多次resize有很大影响,例子如下
//图像重新设置大小 resize Mat srcImage; const int g_resizeMax = 1000; int g_resizeValue = 0; Mat resizeImage; void onTrackBarResize(int pos,void* userData); int main(int argc,char* argv[]) { srcImage = imread("F:\\opencv\\OpenCVImage\\resize.jpg"); namedWindow("src image"); namedWindow("resize image"); g_resizeValue = srcImage.rows; createTrackbar("size value", "resize image", &g_resizeValue, g_resizeMax,onTrackBarResize,0); onTrackBarResize(g_resizeValue, 0); imshow("src image", srcImage); moveWindow("src image", 0, 0); moveWindow("resize image", srcImage.cols, 0); waitKey(0); return 0; } void onTrackBarResize(int pos,void* userData) { if(pos == 0) { imshow("resize image", srcImage); } else { //INTER_LINEAR INTER_CUBIC INTER_AREA INTER_NEAREST resize(srcImage, resizeImage, Size(g_resizeValue,g_resizeValue),0,0,INTER_NEAREST); imshow("resize image", resizeImage); } }
四:图像的阈值化
图像的阈值化是指通过一些算法和决策手段,将图像中的像素编程两种指定像素的集合,例如,将灰度图转换成完全的黑白图,或者直接提出低于或者高于一定值的像素.
图像的阈值化在某些场合下,对于图像的边缘提取十分有效果.
API: void Threshold(源图,目标图,double 阈值,double 最大值,int 阈值类型)
注:1.源和目标图都必须是单通道灰度图像
2.阈值类型决定了阈值化以后,图像中将仅存在哪两种像素点
THRESH_BINARY 低于阈值为0 高于阈值为给定最大值
THRESH_BINARY_INV 低于阈值为给定最大值 高于阈值为0
THRESH_TRUNC 低于阈值,保持原来像素不变,高于阈值,为阈值
THRESH_TOZERO 低于阈值为0,高于阈值保持原来值比边
THRESH_TOZERO_INV 低于阈值保持原来值比边,高于阈值为0
API:void adaptiveThreshold(源,目的,double 最大值,int 自适应算法类型,int 阈值类型,int 自适应 算法的邻域尺寸,double 减去平均或者加权平均中的常数值).
注:该算法是自适应阈值化,自动根据邻域中一个范围的值确定某一点的确定像素阈值,源和目的都需要时单通道图像,阈值类型必须为THRESH_BINARY或者是THRESH_BINARY_INV的一种,自适应算法有两种选择,ADAPTIVE_THRESH_MEAN_C 以邻域尺寸内平均值为阈值,ADAPTIVE_THRESH_GAUSSIAN_C 邻域矩阵值与高斯窗口函数交叉相关的加权综合
使用例程如下
Mat srcImage; Mat srcSingleImage; //正y常¡ê阈D值¦Ì化¡¥ Mat thresholdImage; const int g_thresholdMax = 255; int g_thresholdValue; const int g_thresholdMaxMax = 255; int g_thresholdMaxValue; void onTrackBarThresholdValue(int pos,void* userData); void onTrackBarThresholdMax(int pos,void* userData); //自Á?适º¨º应®|阈D值¦Ì化¡¥ Mat adaptiveThresholdImage; const int g_adaptiveThresholdMaxMax = 255; int g_adaptiveThresholdMaxValue; void onTrackBarAdaptiveThresholdMax(int pos,void* userData); int main(int argc,char* argv[]) { srcImage = imread("F:\\opencv\\OpenCVImage\\adaptiveThreshold.png"); if(srcImage.channels() == 1) { srcSingleImage = srcImage(Range(0,srcImage.rows),Range(0,srcImage.cols)); } else { srcSingleImage = Mat(srcImage.rows, srcImage.cols, CV_8UC1); cvtColor(srcImage, srcSingleImage, CV_RGB2GRAY); } namedWindow("src image"); g_thresholdValue = 100; g_thresholdMaxValue = 255; namedWindow("threshold image"); createTrackbar("threshold max", "threshold image", &g_thresholdMaxValue, g_thresholdMaxMax,onTrackBarThresholdMax,0); createTrackbar("threshold value", "threshold image", &g_thresholdValue, g_thresholdMax,onTrackBarThresholdValue,0); onTrackBarThresholdValue(g_thresholdValue, 0); g_adaptiveThresholdMaxValue = 255; namedWindow("adaptiveThreshold image"); createTrackbar("adaptiveThreshold Max", "adaptiveThreshold image", &g_adaptiveThresholdMaxValue, g_adaptiveThresholdMaxMax,onTrackBarAdaptiveThresholdMax,0); onTrackBarAdaptiveThresholdMax(g_adaptiveThresholdMaxValue, 0); imshow("src image", srcSingleImage); moveWindow("src image", 0, 0); moveWindow("threshold image", srcSingleImage.cols, 0); moveWindow("adaptiveThreshold image", srcSingleImage.cols*2, 0); waitKey(0); return 0; } //正y常¡ê阈D值¦Ì化¡¥,需¨¨要°a指?定¡§阈D值¦Ì以°?及¡ã最Á?大䨮值¦Ì void onTrackBarThresholdValue(int pos,void* userData) { if (g_thresholdMaxValue == 0) { imshow("threshold image", srcSingleImage); } else { threshold(srcSingleImage, thresholdImage, g_thresholdValue, (double)g_thresholdMaxValue, THRESH_BINARY); imshow("threshold image", thresholdImage); } } void onTrackBarThresholdMax(int pos,void* userData) { if (g_thresholdMaxValue == 0) { imshow("threshold image", srcSingleImage); } else { threshold(srcSingleImage, thresholdImage, g_thresholdValue, (double)g_thresholdMaxValue, THRESH_BINARY); imshow("threshold image", thresholdImage); } } //自适应阈值化,只需要指定最大值就好了 void onTrackBarAdaptiveThresholdMax(int pos,void* userData) { if(g_adaptiveThresholdMaxValue == 0) { imshow("adaptiveThreshold image", srcSingleImage); } else { adaptiveThreshold(srcSingleImage, adaptiveThresholdImage, g_adaptiveThresholdMaxValue, THRESH_BINARY, ADAPTIVE_THRESH_MEAN_C, 7, 0); imshow("adaptiveThreshold image", adaptiveThresholdImage); } }
标签:
原文地址:http://www.cnblogs.com/dengxiaojun/p/5252278.html