标签:style blog http for ar line python amp
一,基本运算
>>> a = array([1,2,3,4])
>>> a
array([1, 2, 3, 4])
>>> b=arange(4)
>>> b
array([0, 1, 2, 3])
>>> a + b
array([1, 3, 5, 7])
>>> a - b
array([1, 1, 1, 1])
>>> a *b
array([ 0, 2, 6, 12])
>>> a*2
array([2, 4, 6, 8])
>>> a**2
array([ 1, 4, 9, 16])
>>> a<2
array([ True, False, False, False], dtype=bool)
>>> a = array([[1,2], [2, 3]])
>>> a
array([[1, 2],
[2, 3]])
>>> b=arange(4).reshape(2,2)
>>> b
array([[0, 1],
[2, 3]])
>>> a*b #对应元素直接乘
array([[0, 2],
[4, 9]])
>>> dot(a,b) #矩阵的乘法
array([[ 4, 7],
[ 6, 11]])
二, +=, *= 不会创建新的数组,而只是更改已存在的数组
>>> a = ones((2,2))
>>> b = random.random((2,2))
>>> a
array([[ 1., 1.],
[ 1., 1.]])
>>> b
array([[ 0.10061284, 0.23855578],
[ 0.93143312, 0.49098678]])
>>> a *= 3
>>> a # a本身 发生了改变
array([[ 3., 3.],
[ 3., 3.]])
>>> b += 1
>>> b
array([[ 1.10061284, 1.23855578],
[ 1.93143312, 1.49098678]])
>>> a += b
>>> a
array([[ 4.10061284, 4.23855578],
[ 4.93143312, 4.49098678]])
三, sum, min, max方法
>>> b.sum()
5.7615885259105326
>>> b.min()
1.1006128420882511
>>> b.max()
1.9314331248999363
>>> b = arange(6).reshape(2,3)
>>> b
array([[0, 1, 2],
[3, 4, 5]])
>>> b.sum(axis = 0) #可以指定到某个axis,
array([3, 5, 7])
>>> b.sum(axis = 1)
array([ 3, 12])
>>> b.min(axis = 1)
array([0, 3])
>>> b.min(axis = 0)
array([0, 1, 2])
四, 通用函数, ufunc
>>> a = arange(4)
>>> a
array([0, 1, 2, 3])
>>> min(a)
0
>>> sum(a)
6
>>> max(a)
3
>>> exp(a)
array([ 1. , 2.71828183, 7.3890561 , 20.08553692])
>>> sqrt(a)
array([ 0. , 1. , 1.41421356, 1.73205081])
>>> b = array([4,5,6,7])
>>> add(a,b)
array([ 4, 6, 8, 10])
>>> mean(a)
1.5
>>> std(a)
1.1180339887498949
>>> cov(a)
array(1.6666666666666667)
>>> sort(a)
array([0, 1, 2, 3])
当然还有更多。。。。
五, 索引切片和迭代
一维数组:
>>> a = arange(10)
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> a[0]
0
>>> a[-1]
9
>>> a[0:3]
array([0, 1, 2])
>>> a[:6:2] = 1000 #相当于a[0:6:2] = 1000
>>> a
array([1000, 1, 1000, 3, 1000, 5, 6, 7, 8, 9])
>>> a[::-1]
array([ 9, 8, 7, 6, 5, 1000, 3, 1000, 1, 1000])
>>> for i in a:
... print i*2
...
2000
2
2000
6
2000
10
12
14
16
18
二维数组:
>>> b
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15]])
>>> b[1,1] # 逗号前面是horizontal axis, 逗号后面是vertical axis
5
>>> b[ : , 3] # 全部横轴的第四列的元素
array([ 3, 7, 11, 15])
>>> b[0:-1, 3]
array([ 3, 7, 11])
>>> b[1:3, :] #第二,三行的所有元素
array([[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
>>> for i in b: #i对应的是row
... print i
...
[0 1 2 3]
[4 5 6 7]
[ 8 9 10 11]
[12 13 14 15]
如果想返回每个元素, 用flat方法。
>>> for i in b.flat: #i 对应element
... print i
...
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
更多细节请阅读:
http://phddreamer.blog.163.com/blog/static/18993409620135271852137/
http://scipy.org/Numpy_Example_List
http://scipy.org/NumPy_Tutorial
http://www.tramy.us/
python numpy 的运算,布布扣,bubuko.com
标签:style blog http for ar line python amp
原文地址:http://www.cnblogs.com/freemao/p/3871609.html