标签:
转自:http://www.codeceo.com/article/android-event.html
在Android平台上,主要用到两种通信机制,即Binder机制和事件机制,前者用于跨进程通信,后者用于进程内部通信。
从技术实现上来说,事件机制还是比较简单的。从大的方面讲,不光是Android平台,各种平台的消息机制的原理基本上都是相近的,其中用到的主要概念大概有:
1)消息发送者;
2)消息队列;
3)消息处理循环。
示意图如下:
图中表达的基本意思是,消息发送者通过某种方式,将消息发送到某个消息队列里,同时还有一个消息处理循环,不断从消息队列里摘取消息,并进一步解析处理。
在Android平台上,把上图的右边部分包装成了一个Looper类,这个类的内部具有对应的消息队列(MessageQueue mQueue)和loop函数。
但是Looper只是个简单的类而已,它虽然提供了循环处理方面的成员函数loop(),却不能自己凭空地运行起来,而只能寄身于某个真实的线程。而且,每个线程最多只能运作一个Looper对象,这一点应该很容易理解。
Android平台上另一个关键类是Handler。当消息循环在其寄身的线程里正式运作后,外界就是通过Handler向消息循环发出事件的。我们再画一张示意图如下:
当然,系统也允许多个Handler向同一个消息队列发送消息:
整个消息机制的轮廓也就是这些啦,下面我们来详细阐述。
Looper类的定义截选如下:
【frameworks/base/core/java/android/os/Looper.java】
public final class Looper { private static final String TAG = "Looper"; // sThreadLocal.get() will return null unless you‘ve called prepare(). static final ThreadLocal<Looper> sThreadLocal = new ThreadLocal<Looper>(); private static Looper sMainLooper; // guarded by Looper.class final MessageQueue mQueue; final Thread mThread; private Printer mLogging; . . . . . . . . . . . .
当一个线程运行到某处,准备运作一个Looper时,它必须先调用Looper类的静态函数prepare(),做一些准备工作。说穿了就是创建一个Looper对象,并把它设置进线程的本地存储区(TLS)里。然后线程才能继续调用Looper类的另一个静态函数loop(),从而建立起消息处理循环。示意图如下:
prepare()函数的代码如下:
public static void prepare() { prepare(true); } private static void prepare(boolean quitAllowed) { if (sThreadLocal.get() != null) { throw new RuntimeException("Only one Looper may be created per thread"); } sThreadLocal.set(new Looper(quitAllowed)); // 创建Looper对象,并设置进TLS }
可以看到,sThreadLocal.set()一句所完成的工作,正是把新创建的Looper对象设置进线程本地存储区里。在Looper.prepare()之后,线程的主运作函数就可以调用Looper.loop()了。
为了便于大家理解,我们多说两句关于sThreadLocal的细节,这会牵扯一点儿本地存储的技术。简单地说,每个线程对象内部会记录一张逻辑上的key-value表,当然,这张表在具体实现时不一定会被实现成HashMap,以我们目前的代码来说,它被记录成一个数组,其中每两个数组项作为一个key-value单元。反正大家从逻辑上理解概念即可,不必拘泥于具体实现。很明显,一个线程内部是可以记录多个本地存储单元的,我们关心的sThreadLocal只是其中一个本地存储单元的key而已。
当我们在不同Thread里调用Looper.prepare()时,其实是向Thread对应的那张表里添加一个key-value项,其中的key部分,指向的是同一个对象,即Looper.sThreadLocal静态对象,而value部分,则彼此不同,我们可以画出如下示意图:
看到了吧,不同Thread会对应不同Object[]数组,该数组以每2个元素为一个key-value对。请注意不同Thread虽然使用同一个静态对象作为key值,最终却会对应不同的Looper对象,这一点系统是不会弄错的。
为了由浅入深地阐述问题,我们暂时先不看Looper.loop()内部的代码,这个后文还会再讲。现在我们接着说说Handler。
一般而言,运作Looper的线程会负责构造自己的Handler对象,当然,其他线程也可以针对某个Looper构造Handler对象。
Handler对象在构造时,不但会把Looper对象记录在它内部的mLooper成员变量中,还会把Looper对象的消息队列也一并记录,代码截选如下:
public Handler(Callback callback, boolean async) { . . . . . . mLooper = Looper.myLooper(); // 记录下Looper对象 . . . . . . mQueue = mLooper.mQueue; // 也记录下Looper对象的消息队列 mCallback = callback; mAsynchronous = async; }
我们也可以直接传入Looper对象,此时可以使用另一个构造函数:
public Handler(Looper looper, Callback callback, boolean async) { mLooper = looper; // 记录下Looper对象 mQueue = looper.mQueue; // 也记录下Looper对象的消息队列 mCallback = callback; mAsynchronous = async; }
以后,每当线程需要向消息队列发送消息时,只需调用Handler对象的sendMessage()等成员函数就可以了。
简单说来,只要一个线程可以获取另一个目标线程的某个Handler对象,它就具有了向目标线程发送消息的能力。不过,也只是发送消息而已,消息的真正处理却是在目标线程的消息循环里完成的。
前文已经说过,在Looper准备停当后,我们的线程会调用Looper.loop(),从而进入真正的循环机制。loop()函数的代码流程非常简单,只不过是在一个for循环里不停从消息队列中摘取消息,而后调用msg.target.dispatchMessage()对消息进行派发处理而已。
这么看来,msg.target域就显得比较重要了,说穿了,这个域记录的其实就是当初向消息队列发送消息的那个handler啦。当我们调用handler的send函数时,最终基本上都会走到sendMessageAtTime(),其代码如下:
【frameworks/base/core/java/android/os/Handler.java】
public boolean sendMessageAtTime(Message msg, long uptimeMillis) { MessageQueue queue = mQueue; if (queue == null) { RuntimeException e = new RuntimeException( this + " sendMessageAtTime() called with no mQueue"); Log.w("Looper", e.getMessage(), e); return false; } return enqueueMessage(queue, msg, uptimeMillis); }
private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) { // 注意这一句,消息的target就是handler对象啦!日后msg.target.dispatchMessage()时会使用。 msg.target = this; if (mAsynchronous) { msg.setAsynchronous(true); } return queue.enqueueMessage(msg, uptimeMillis); }
请大家注意msg.target = this;一句,记录的就是handler对象。
当Looper的消息循环最终调用到msg.target.dispatchMessage()时,会间接调用到handler的handleMessage()函数,从而对消息进行实际处理。
在实际运用handler时,大体有两种方式。一种方式是写一个继承于Handler的新类,并在新类里实现自己的handleMessage()成员函数;另一种方式是在创建匿名Handler对象时,直接修改handleMessage()成员函数。
在刚刚介绍Handler的sendMessageAtTime()时,我们已经看到最终会调用queue.enqueueMessage()来向消息队列打入消息。queue对应的类是MessageQueue,其定义截选如下:
【frameworks/base/core/java/android/os/MessageQueue.java】
public final class MessageQueue { // True if the message queue can be quit. private final boolean mQuitAllowed; @SuppressWarnings("unused") private int mPtr; // used by native code Message mMessages; // 消息队列! private final ArrayList<IdleHandler> mIdleHandlers = new ArrayList<IdleHandler>(); private IdleHandler[] mPendingIdleHandlers; private boolean mQuitting; // Indicates whether next() is blocked waiting in pollOnce() with a non-zero timeout. private boolean mBlocked; // The next barrier token. // Barriers are indicated by messages with a null target whose arg1 field carries the token. private int mNextBarrierToken; private native static int nativeInit(); private native static void nativeDestroy(int ptr); private native static void nativePollOnce(int ptr, int timeoutMillis); private native static void nativeWake(int ptr); private native static boolean nativeIsIdling(int ptr); . . . . . .
其中Message mMessages记录的就是一条消息链表。另外还有几个native函数,这就说明MessageQueue会通过JNI技术调用到底层代码。mMessages域记录着消息队列中所有Java层的实质消息。请大家注意,记录的只是Java层的消息,不包括C++层的。MessageQueue的示意图如下:
很明显,enqueueMessage()就是在向MessageQueue的消息链表里插入Message。其代码截选如下:
【frameworks/base/core/java/android/os/MessageQueue.java】
boolean enqueueMessage(Message msg, long when) { . . . . . . . . . . . . msg.when = when; Message p = mMessages; boolean needWake; if (p == null || when == 0 || when < p.when) { // 此时,新消息会插入到链表的表头,这意味着队列需要调整唤醒时间啦。 msg.next = p; mMessages = msg; needWake = mBlocked; } else { // 此时,新消息会插入到链表的内部,一般情况下,这不需要调整唤醒时间。 // 但还必须考虑到当表头为“同步分割栏”的情况 needWake = mBlocked && p.target == null && msg.isAsynchronous(); Message prev; for (;;) { prev = p; p = p.next; if (p == null || when < p.when) { break; } if (needWake && p.isAsynchronous()) { // 说明即便msg是异步的,也不是链表中第一个异步消息,所以没必要唤醒了 needWake = false; } } msg.next = p; prev.next = msg; } if (needWake) { nativeWake(mPtr); } . . . . . . }
打入消息的动作并不复杂,无非是在消息链表中找到合适的位置,插入Message节点而已。因为消息链表是按时间进行排序的,所以主要是在比对Message携带的when信息。消息链表的首个节点对应着最先将被处理的消息,如果Message被插到链表的头部了,就意味着队列的最近唤醒时间也应该被调整了,因此needWake会被设为true,以便代码下方可以走进nativeWake()。
上面的代码中还有一个“同步分割栏”的概念需要提一下。所谓“同步分割栏”,可以被理解为一个特殊Message,它的target域为null。它不能通过sendMessageAtTime()等函数打入到消息队列里,而只能通过调用Looper的postSyncBarrier()来打入。
“同步分割栏”是起什么作用的呢?它就像一个卡子,卡在消息链表中的某个位置,当消息循环不断从消息链表中摘取消息并进行处理时,一旦遇到这种“同步分割栏”,那么即使在分割栏之后还有若干已经到时的普通Message,也不会摘取这些消息了。请注意,此时只是不会摘取“普通Message”了,如果队列中还设置有“异步Message”,那么还是会摘取已到时的“异步Message”的。
在Android的消息机制里,“普通Message”和“异步Message”也就是这点儿区别啦,也就是说,如果消息列表中根本没有设置“同步分割栏”的话,那么“普通Message”和“异步Message”的处理就没什么大的不同了。
打入“同步分割栏”的postSyncBarrier()函数的代码如下:
【frameworks/base/core/java/android/os/Looper.java】
public int postSyncBarrier() { return mQueue.enqueueSyncBarrier(SystemClock.uptimeMillis()); }
【frameworks/base/core/java/android/os/MessageQueue.java】
int enqueueSyncBarrier(long when) { synchronized (this) { final int token = mNextBarrierToken++; final Message msg = Message.obtain(); msg.when = when; msg.arg1 = token; Message prev = null; Message p = mMessages; if (when != 0) { while (p != null && p.when <= when) { prev = p; p = p.next; } } if (prev != null) { msg.next = p; prev.next = msg; } else { msg.next = p; mMessages = msg; } return token; } }
要得到“异步Message”,只需调用一下Message的setAsynchronous()即可:
【frameworks/base/core/java/android/os/Message.java】
public void setAsynchronous(boolean async) { if (async) { flags |= FLAG_ASYNCHRONOUS; } else { flags &= ~FLAG_ASYNCHRONOUS; } }
一般,我们是通过“异步Handler”向消息队列打入“异步Message”的。异步Handler的mAsynchronous域为true,因此它在调用enqueueMessage()时,可以走入:
if (mAsynchronous) { msg.setAsynchronous(true); }
现在我们画一张关于“同步分割栏”的示意图:
图中的消息队列中有一个“同步分割栏”,因此它后面的“2”号Message即使到时了,也不会摘取下来。而“3”号Message因为是个异步Message,所以当它到时后,是可以进行处理的。
“同步分割栏”这种卡子会一直卡在消息队列中,除非我们调用removeSyncBarrier()删除这个卡子。
【frameworks/base/core/java/android/os/Looper.java】
public void removeSyncBarrier(int token) { mQueue.removeSyncBarrier(token); }
【frameworks/base/core/java/android/os/MessageQueue.java】
void removeSyncBarrier(int token) { // Remove a sync barrier token from the queue. // If the queue is no longer stalled by a barrier then wake it. synchronized (this) { Message prev = null; Message p = mMessages; while (p != null && (p.target != null || p.arg1 != token)) { prev = p; p = p.next; } if (p == null) { throw new IllegalStateException("The specified message queue synchronization " + " barrier token has not been posted or has already been removed."); } final boolean needWake; if (prev != null) { prev.next = p.next; needWake = false; } else { mMessages = p.next; needWake = mMessages == null || mMessages.target != null; } p.recycle(); // If the loop is quitting then it is already awake. // We can assume mPtr != 0 when mQuitting is false. if (needWake && !mQuitting) { nativeWake(mPtr); } } }
和插入消息类似,如果删除动作改变了链表的头部,也意味着队列的最近唤醒时间应该被调整了,因此needWake会被设为true,以便代码下方可以走进nativeWake()。
nativeWake()对应的C++层函数如下:
【frameworks/base/core/jni/android_os_MessageQueue.cpp】
static void android_os_MessageQueue_nativeWake(JNIEnv* env, jclass clazz, jint ptr) { NativeMessageQueue* nativeMessageQueue = reinterpret_cast<NativeMessageQueue*>(ptr); return nativeMessageQueue->wake(); }
void NativeMessageQueue::wake() { mLooper->wake(); }
【system/core/libutils/Looper.cpp】
void Looper::wake() { . . . . . . ssize_t nWrite; do { nWrite = write(mWakeWritePipeFd, "W", 1); } while (nWrite == -1 && errno == EINTR); if (nWrite != 1) { if (errno != EAGAIN) { ALOGW("Could not write wake signal, errno=%d", errno); } } }
wake()动作主要是向一个管道的“写入端”写入了“W”。有关这个管道的细节,我们会在后文再细说,这里先放下。
接下来我们来看看消息循环。我们从Looper的Loop()函数开始讲起。下面是loop()函数的简略代码,我们只保留了其中最关键的部分:
【frameworks/base/core/java/android/os/Looper.java】
public static void loop() { final Looper me = myLooper(); . . . . . . final MessageQueue queue = me.mQueue; Binder.clearCallingIdentity(); final long ident = Binder.clearCallingIdentity(); for (;;) { Message msg = queue.next(); // might block . . . . . . msg.target.dispatchMessage(msg); // 派发消息 . . . . . . final long newIdent = Binder.clearCallingIdentity(); . . . . . . msg.recycle(); } }
无非是在一个for循环里不断摘取队列里的下一条消息,而后dispatchMessage()消息。呃,至少逻辑上就是这么简单,但如果我们希望再探索得更深一点的话,就得详细研究MessageQueue以及其next()函数了。
对于Looper而言,它主要关心的是从消息队列里摘取消息,而后分派消息。然而对消息队列而言,在摘取消息时还要考虑更多技术细节。它关心的细节有:
1)如果消息队列里目前没有合适的消息可以摘取,那么不能让它所属的线程“傻转”,而应该使之阻塞;
2)队列里的消息应该按其“到时”的顺序进行排列,最先到时的消息会放在队头,也就是mMessages域所指向的消息,其后的消息依次排开;
3)阻塞的时间最好能精确一点儿,所以如果暂时没有合适的消息节点可摘时,要考虑链表首个消息节点将在什么时候到时,所以这个消息节点距离当前时刻的时间差,就是我们要阻塞的时长。
4)有时候外界希望队列能在即将进入阻塞状态之前做一些动作,这些动作可以称为idle动作,我们需要兼顾处理这些idle动作。一个典型的例子是外界希望队列在进入阻塞之前做一次垃圾收集。
以上所述的细节,基本上都体现在MessageQueue的next()函数里了,现在我们就来看这个函数的主要流程。
MessageQueue的next()函数的代码截选如下:
Message next() { int pendingIdleHandlerCount = -1; // -1 only during first iteration int nextPollTimeoutMillis = 0; for (;;) { . . . . . . nativePollOnce(mPtr, nextPollTimeoutMillis); // 阻塞于此 . . . . . . // 获取next消息,如能得到就返回之。 final long now = SystemClock.uptimeMillis(); Message prevMsg = null; Message msg = mMessages; // 先尝试拿消息队列里当前第一个消息 if (msg != null && msg.target == null) { // 如果从队列里拿到的msg是个“同步分割栏”,那么就寻找其后第一个“异步消息” do { prevMsg = msg; msg = msg.next; } while (msg != null && !msg.isAsynchronous()); } if (msg != null) { if (now < msg.when) { // Next message is not ready. Set a timeout to wake up when it is ready. nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE); } else { // Got a message. mBlocked = false; if (prevMsg != null) { prevMsg.next = msg.next; } else { mMessages = msg.next; // 重新设置一下消息队列的头部 } msg.next = null; if (false) Log.v("MessageQueue", "Returning message: " + msg); msg.markInUse(); return msg; // 返回得到的消息对象 } } else { // No more messages. nextPollTimeoutMillis = -1; } // Process the quit message now that all pending messages have been handled. if (mQuitting) { dispose(); return null; } if (pendingIdleHandlerCount < 0 && (mMessages == null || now < mMessages.when)) { pendingIdleHandlerCount = mIdleHandlers.size(); } if (pendingIdleHandlerCount <= 0) { // No idle handlers to run. Loop and wait some more. mBlocked = true; continue; } . . . . . . // 处理idle handlers部分 for (int i = 0; i < pendingIdleHandlerCount; i++) { final IdleHandler idler = mPendingIdleHandlers[i]; mPendingIdleHandlers[i] = null; // release the reference to the handler boolean keep = false; try { keep = idler.queueIdle(); } catch (Throwable t) { Log.wtf("MessageQueue", "IdleHandler threw exception", t); } if (!keep) { synchronized (this) { mIdleHandlers.remove(idler); } } } pendingIdleHandlerCount = 0; nextPollTimeoutMillis = 0; } }
这个函数里的for循环并不是起循环摘取消息节点的作用,而是为了连贯“当前时间点”和“处理下一条消息的时间点”。简单地说,当“定时机制”触发“摘取一条消息”的动作时,会判断事件队列的首条消息是否真的到时了,如果已经到时了,就直接返回这个msg,而如果尚未到时,则会努力计算一个较精确的等待时间(nextPollTimeoutMillis),计算完后,那个for循环会掉过头再次调用到nativePollOnce(mPtr, nextPollTimeoutMillis),进入阻塞状态,从而等待合适的时长。
上面代码中也处理了“同步分割栏”的情况。如果从队列里获取的消息是个“同步分割栏”的话,可千万不能把“同步分割栏”给返回了,此时会尝试找寻其后第一个“异步消息”。
next()里另一个要说的是那些Idle Handler,当消息队列中没有消息需要马上处理时,会判断用户是否设置了Idle Handler,如果有的话,则会尝试处理mIdleHandlers中所记录的所有Idle Handler,此时会逐个调用这些Idle Handler的queueIdle()成员函数。我们举一个例子,在ActivityThread中,在某种情况下会在消息队列中设置GcIdler,进行垃圾收集,其定义如下:
final class GcIdler implements MessageQueue.IdleHandler { @Override public final boolean queueIdle() { doGcIfNeeded(); return false; } }
一旦队列里设置了这个Idle Handler,那么当队列中没有马上需处理的消息时,就会进行垃圾收集。
前文我们已经说过,next()中调用的nativePollOnce()起到了阻塞作用,保证消息循环不会在无消息处理时一直在那里“傻转”。那么,nativePollOnce()函数究竟是如何实现阻塞功能的呢?我们来探索一下。首先,MessageQueue类里声明的几个native函数,对应的JNI实现位于android_os_MessageQueue.cpp文件中:
【frameworks/base/core/jni/android_os_MessageQueue.cpp】
static JNINativeMethod gMessageQueueMethods[] = { /* name, signature, funcPtr */ { "nativeInit", "()I", (void*)android_os_MessageQueue_nativeInit }, { "nativeDestroy", "(I)V", (void*)android_os_MessageQueue_nativeDestroy }, { "nativePollOnce", "(II)V", (void*)android_os_MessageQueue_nativePollOnce }, { "nativeWake", "(I)V", (void*)android_os_MessageQueue_nativeWake }, { "nativeIsIdling", "(I)Z", (void*)android_os_MessageQueue_nativeIsIdling } };
而且在MessageQueue构造之时,就会调用nativeInit()函数。
目前我们只关心nativePollOnce对应的android_os_MessageQueue_nativePollOnce()。其代码如下:
static void android_os_MessageQueue_nativePollOnce(JNIEnv* env, jclass clazz, jint ptr, jint timeoutMillis) { NativeMessageQueue* nativeMessageQueue = reinterpret_cast<NativeMessageQueue*>(ptr); nativeMessageQueue->pollOnce(env, timeoutMillis); }
看到了吧,ptr参数会被强制转换成NativeMessageQueue*。
NativeMessageQueue的pollOnce()如下:
【frameworks/base/core/jni/android_os_MessageQueue.cpp】
void NativeMessageQueue::pollOnce(JNIEnv* env, int timeoutMillis) { mInCallback = true; mLooper->pollOnce(timeoutMillis); // 用到C++层的Looper对象 mInCallback = false; if (mExceptionObj) { env->Throw(mExceptionObj); env->DeleteLocalRef(mExceptionObj); mExceptionObj = NULL; } }
这里会用到C++层的Looper类,它和Java层的Looper类可是不一样的哩。C++层的Looper类的定义截选如下:
【system/core/include/utils/Looper.h】
class Looper : public ALooper, public RefBase { protected: virtual ~Looper(); public: Looper(bool allowNonCallbacks); bool getAllowNonCallbacks() const; int pollOnce(int timeoutMillis, int* outFd, int* outEvents, void** outData); . . . . . . int pollAll(int timeoutMillis, int* outFd, int* outEvents, void** outData); . . . . . . void wake(); int addFd(int fd, int ident, int events, ALooper_callbackFunc callback, void* data); int addFd(int fd, int ident, int events, const sp<LooperCallback>& callback, void* data); int removeFd(int fd); void sendMessage(const sp<MessageHandler>& handler, const Message& message); void sendMessageDelayed(nsecs_t uptimeDelay, const sp<MessageHandler>& handler, const Message& message); void sendMessageAtTime(nsecs_t uptime, const sp<MessageHandler>& handler, const Message& message); void removeMessages(const sp<MessageHandler>& handler); void removeMessages(const sp<MessageHandler>& handler, int what); bool isIdling() const; static sp<Looper> prepare(int opts); static void setForThread(const sp<Looper>& looper); static sp<Looper> getForThread(); . . . . . . . . . . . . };
我们把C++层的NativeMessageQueue和Looper融入前文的示意图,可以得到一张新的示意图,如下所示:
C++层的Looper的构造函数如下:
Looper::Looper(bool allowNonCallbacks) : mAllowNonCallbacks(allowNonCallbacks), mSendingMessage(false), mResponseIndex(0), mNextMessageUptime(LLONG_MAX) { int wakeFds[2]; int result = pipe(wakeFds); // 创建一个管道 LOG_ALWAYS_FATAL_IF(result != 0, "Could not create wake pipe. errno=%d", errno); mWakeReadPipeFd = wakeFds[0]; // 管道的“读取端” mWakeWritePipeFd = wakeFds[1]; // 管道的“写入端” result = fcntl(mWakeReadPipeFd, F_SETFL, O_NONBLOCK); LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake read pipe non-blocking. errno=%d", errno); result = fcntl(mWakeWritePipeFd, F_SETFL, O_NONBLOCK); LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake write pipe non-blocking. errno=%d", errno); mIdling = false; // 创建一个epoll mEpollFd = epoll_create(EPOLL_SIZE_HINT); LOG_ALWAYS_FATAL_IF(mEpollFd < 0, "Could not create epoll instance. errno=%d", errno); struct epoll_event eventItem; memset(& eventItem, 0, sizeof(epoll_event)); eventItem.events = EPOLLIN; eventItem.data.fd = mWakeReadPipeFd; // 监听管道的read端 result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeReadPipeFd, & eventItem); LOG_ALWAYS_FATAL_IF(result != 0, "Could not add wake read pipe to epoll instance. errno=%d", errno); }
可以看到在构造Looper对象时,其内部除了创建了一个管道以外,还创建了一个epoll来监听管道的“读取端”。也就是说,是利用epoll机制来完成阻塞动作的。每当我们向消息队列发送事件时,最终会间接向管道的“写入端”写入数据,这个前文已有叙述,于是epoll通过管道的“读取端”立即就感知到了风吹草动,epoll_wait()在等到事件后,随即进行相应的事件处理。这就是消息循环阻塞并处理的大体流程。当然,因为向管道写数据只是为了通知风吹草动,所以写入的数据是非常简单的“W”字符串。现在大家不妨再看看前文阐述“nativeWake()”的小节,应该能明白了吧。
我们还是继续说消息循环。Looper的pollOnce()函数如下:
【system/core/libutils/Looper.cpp】
int Looper::pollOnce(int timeoutMillis, int* outFd, int* outEvents, void** outData) { int result = 0; for (;;) { . . . . . . if (result != 0) { . . . . . . if (outFd != NULL) *outFd = 0; if (outEvents != NULL) *outEvents = 0; if (outData != NULL) *outData = NULL; return result; } result = pollInner(timeoutMillis); } }
int Looper::pollInner(int timeoutMillis) { . . . . . . // 阻塞、等待 int eventCount = epoll_wait( mEpollFd, eventItems, EPOLL_MAX_EVENTS, timeoutMillis); . . . . . . . . . . . . // 处理所有epoll事件 for (int i = 0; i < eventCount; i++) { int fd = eventItems[i].data.fd; uint32_t epollEvents = eventItems[i].events; if (fd == mWakeReadPipeFd) { if (epollEvents & EPOLLIN) { awoken(); // 从管道中感知到EPOLLIN,于是调用awoken() } . . . . . . } else { // 如果是除管道以外的其他fd发生了变动,那么根据其对应的request, // 将response先记录进mResponses ssize_t requestIndex = mRequests.indexOfKey(fd); if (requestIndex >= 0) { int events = 0; if (epollEvents & EPOLLIN ) events |= ALOOPER_EVENT_INPUT; if (epollEvents & EPOLLOUT) events |= ALOOPER_EVENT_OUTPUT; if (epollEvents & EPOLLERR) events |= ALOOPER_EVENT_ERROR; if (epollEvents & EPOLLHUP) events |= ALOOPER_EVENT_HANGUP; // 内部会调用 mResponses.push(response); pushResponse(events, mRequests.valueAt(requestIndex)); } . . . . . . } } Done: ; . . . . . . // 调用尚未处理的事件的回调 while (mMessageEnvelopes.size() != 0) { nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC); const MessageEnvelope& messageEnvelope = mMessageEnvelopes.itemAt(0); if (messageEnvelope.uptime <= now) { { sp<MessageHandler> handler = messageEnvelope.handler; Message message = messageEnvelope.message; mMessageEnvelopes.removeAt(0); . . . . . . handler->handleMessage(message); } . . . . . . } else { mNextMessageUptime = messageEnvelope.uptime; break; } } . . . . . . // 调用所有response记录的回调 for (size_t i = 0; i < mResponses.size(); i++) { Response& response = mResponses.editItemAt(i); if (response.request.ident == ALOOPER_POLL_CALLBACK) { . . . . . . int callbackResult = response.request.callback->handleEvent(fd, events, data); if (callbackResult == 0) { removeFd(fd); } . . . . . . } } return result; }
现在我们可以画一张调用示意图,理一下loop()函数的调用关系,如下:
pollInner()调用epoll_wait()时传入的timeoutMillis参数,其实来自于前文所说的MessageQueue的next()函数里的nextPollTimeoutMillis,next()函数里在以下3种情况下,会给nextPollTimeoutMillis赋不同的值:
1)如果消息队列中的下一条消息还要等一段时间才到时的话,那么nextPollTimeoutMillis赋值为Math.min(msg.when – now, Integer.MAX_VALUE),即时间差;
2)如果消息队列已经是空队列了,那么nextPollTimeoutMillis赋值为-1;
3)不管前两种情况下是否已给nextPollTimeoutMillis赋过值了,只要队列中有Idle Handler需要处理,那么在处理完所有Idle Handler之后,会强制将nextPollTimeoutMillis赋值为0。这主要是考虑到在处理Idle Handler时,不知道会耗时多少,而在此期间消息队列的“到时情况”有可能已发生改变。
不管epoll_wait()的超时阀值被设置成什么,只要程序从epoll_wait()中返回,就会尝试处理等到的epoll事件。目前我们的主要关心点是事件机制,所以主要讨论当fd 等于mWakeReadPipeFd时的情况,此时会调用一下awoken()函数。该函数很简单,只是在读取mWakeReadPipeFd而已:
void Looper::awoken() { #if DEBUG_POLL_AND_WAKE ALOGD("%p ~ awoken", this); #endif char buffer[16]; ssize_t nRead; do { nRead = read(mWakeReadPipeFd, buffer, sizeof(buffer)); } while ((nRead == -1 && errno == EINTR) || nRead == sizeof(buffer)); }
为什么要起个名字叫awoken()呢?这是因为当初发送事件时,最终是调用一个wake()函数来通知消息队列的,现在epoll_wait()既然已经感应到了,自然相当于“被唤醒”(awoken)了。
除了感知mWakeReadPipeFd管道的情况以外,epoll还会感知其他一些fd对应的事件。在Looper中有一个mRequests键值向量表(KeyedVector<int, Request> mRequests),其键值就是感兴趣的fd。如果收到的epoll事件所携带的fd可以在这张表里查到,那么就将该fd对应的Request整理进Response对象,并将该Response对象记入mResponses表。在pollInner()的最后,会用一个for循环遍历mResponses表,分析每个Response表项对应的Request是不是需要callback,如果需要的话,执行对应的回调函数:
int callbackResult = response.request.callback->handleEvent(fd, events, data); if (callbackResult == 0) { removeFd(fd); }
可以看到,handleEvent()的返回值将决定那个Request表项是否继续保留在mRequests表中,如果返回值为0,说明不必保留了,所以删除之。删除时会同时从epoll中注销这个Request对应的fd,表示不再对这个fd感兴趣了。
pollInner()内部还会集中处理所记录的所有C++层的Message。在一个while循环中,不断摘取mMessageEnvelopes向量表的第0个MessageEnvelope,如果消息已经到时,则回调handleMessage()。
sp<MessageHandler> handler = messageEnvelope.handler; Message message = messageEnvelope.message; mMessageEnvelopes.removeAt(0); . . . . . . handler->handleMessage(message);
而如果消息未到时,说明while循环可以break了。
C++层的Looper及这个层次的消息链表,再加上对应其他fd的Request和Response,可以形成下面这张示意图:
从我们的分析中可以知道,在Android中,不光是Java层可以发送Message,C++层也可以发送,当然,不同层次的Message是放在不同层次的消息链中的。在Java层,每次尝试从队列中获取一个Message,而后dispatch它。而C++层的消息则尽量在一次pollOnce中集中处理完毕,这是它们的一点不同。
关于Android的事件机制,我们就先说这么多。总体上的而言还是比较简单的,无非是通过Handler向Looper的消息队列中插入Message,而后再由Looper在消息循环里具体处理。因为消息队列本身不具有链表一变动就能马上感知的功能,所以它需要借助管道和epoll机制来监听变动。当外界向消息队列中打入新消息后,就向管道的“写入端”写入简单数据,于是epoll可以立即感知到管道的变动,从何激发从消息队列中摘取消息的动作。这就是Android事件机制的大体情况。
标签:
原文地址:http://www.cnblogs.com/wllearnandroid/p/5332400.html