码迷,mamicode.com
首页 > 数据库 > 详细

SqlAlchemy ORM

时间:2016-04-01 00:48:25      阅读:322      评论:0      收藏:0      [点我收藏+]

标签:

SqlAlchemy ORM  

SQLAlchemy是Python编程语言下的一款ORM框架,该框架建立在数据库API之上,使用关系对象映射进行数据库操作,简言之便是:将对象转换成SQL,然后使用数据API执行SQL并获取执行结果

技术分享

Dialect用于和数据API进行交流,根据配置文件的不同调用不同的数据库API,从而实现对数据库的操作,如:

1
2
3
4
5
6
7
8
9
10
11
12
13
MySQL-Python
    mysql+mysqldb://<user>:<password>@<host>[:<port>]/<dbname>
  
pymysql
    mysql+pymysql://<username>:<password>@<host>/<dbname>[?<options>]
  
MySQL-Connector
    mysql+mysqlconnector://<user>:<password>@<host>[:<port>]/<dbname>
  
cx_Oracle
    oracle+cx_oracle://user:pass@host:port/dbname[?key=value&key=value...]
  
更多详见:http://docs.sqlalchemy.org/en/latest/dialects/index.html

  

步骤一:

使用 Engine/ConnectionPooling/Dialect 进行数据库操作,Engine使用ConnectionPooling连接数据库,然后再通过Dialect执行SQL语句。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#!/usr/bin/env python
# -*- coding:utf-8 -*-
  
from sqlalchemy import create_engine
  
  
engine = create_engine("mysql+mysqldb://root:123@127.0.0.1:3306/s11", max_overflow=5)
  
engine.execute(
    "INSERT INTO ts_test (a, b) VALUES (‘2‘, ‘v1‘)"
)
  
engine.execute(
     "INSERT INTO ts_test (a, b) VALUES (%s, %s)",
    ((555, "v1"),(666, "v1"),)
)
engine.execute(
    "INSERT INTO ts_test (a, b) VALUES (%(id)s, %(name)s)",
    id=999, name="v1"
)
  
result = engine.execute(‘select * from ts_test‘)
result.fetchall()

  

步骤二:

使用 Schema Type/SQL Expression Language/Engine/ConnectionPooling/Dialect 进行数据库操作。Engine使用Schema Type创建一个特定的结构对象,之后通过SQL Expression Language将该对象转换成SQL语句,然后通过 ConnectionPooling 连接数据库,再然后通过 Dialect 执行SQL,并获取结果。

增删改查

 

一个简单的完整例子

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
from sqlalchemy import create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String
from  sqlalchemy.orm import sessionmaker
 
Base = declarative_base() #生成一个SqlORM 基类
 
 
engine = create_engine("mysql+mysqldb://root@localhost:3306/test",echo=False)
 
 
class Host(Base):
    __tablename__ = ‘hosts‘
    id = Column(Integer,primary_key=True,autoincrement=True)
    hostname = Column(String(64),unique=True,nullable=False)
    ip_addr = Column(String(128),unique=True,nullable=False)
    port = Column(Integer,default=22)
 
Base.metadata.create_all(engine) #创建所有表结构
 
if __name__ == ‘__main__‘:
    SessionCls = sessionmaker(bind=engine) #创建与数据库的会话session class ,注意,这里返回给session的是个class,不是实例
    session = SessionCls()
    #h1 = Host(hostname=‘localhost‘,ip_addr=‘127.0.0.1‘)
    #h2 = Host(hostname=‘ubuntu‘,ip_addr=‘192.168.2.243‘,port=20000)
    #h3 = Host(hostname=‘ubuntu2‘,ip_addr=‘192.168.2.244‘,port=20000)
    #session.add(h3)
    #session.add_all( [h1,h2])
    #h2.hostname = ‘ubuntu_test‘ #只要没提交,此时修改也没问题
    #session.rollback()
    #session.commit() #提交
    res = session.query(Host).filter(Host.hostname.in_([‘ubuntu2‘,‘localhost‘])).all()
    print(res)

  

 

更多内容详见:

    http://www.jianshu.com/p/e6bba189fcbd

    http://docs.sqlalchemy.org/en/latest/core/expression_api.html

注:SQLAlchemy无法修改表结构,如果需要可以使用SQLAlchemy开发者开源的另外一个软件Alembic来完成。

步骤三:

使用 ORM/Schema Type/SQL Expression Language/Engine/ConnectionPooling/Dialect 所有组件对数据进行操作。根据类创建对象,对象转换成SQL,执行SQL。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
#!/usr/bin/env python
# -*- coding:utf-8 -*-
  
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String
from sqlalchemy.orm import sessionmaker
from sqlalchemy import create_engine
  
engine = create_engine("mysql+mysqldb://root:123@127.0.0.1:3306/s11", max_overflow=5)
  
Base = declarative_base()
  
  
class User(Base):
    __tablename__ = ‘users‘
    id = Column(Integer, primary_key=True)
    name = Column(String(50))
  
# 寻找Base的所有子类,按照子类的结构在数据库中生成对应的数据表信息
# Base.metadata.create_all(engine)
  
Session = sessionmaker(bind=engine)
session = Session()
  
  
# ########## 增 ##########
# u = User(id=2, name=‘sb‘)
# session.add(u)
# session.add_all([
#     User(id=3, name=‘sb‘),
#     User(id=4, name=‘sb‘)
# ])
# session.commit()
  
# ########## 删除 ##########
# session.query(User).filter(User.id > 2).delete()
# session.commit()
  
# ########## 修改 ##########
# session.query(User).filter(User.id > 2).update({‘cluster_id‘ : 0})
# session.commit()
# ########## 查 ##########
# ret = session.query(User).filter_by(name=‘sb‘).first()
  
# ret = session.query(User).filter_by(name=‘sb‘).all()
# print ret
  
# ret = session.query(User).filter(User.name.in_([‘sb‘,‘bb‘])).all()
# print ret
  
# ret = session.query(User.name.label(‘name_label‘)).all()
# print ret,type(ret)
  
# ret = session.query(User).order_by(User.id).all()
# print ret
  
# ret = session.query(User).order_by(User.id)[1:3]
# print ret
# session.commit()

外键关联

A one to many relationship places a foreign key on the child table referencing the parent.relationship() is then specified on the parent, as referencing a collection of items represented by the child

from sqlalchemy import Table, Column, Integer, ForeignKey
from sqlalchemy.orm import relationship
from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()
1
2
3
4
5
6
7
8
9
<br>class Parent(Base):
    __tablename__ = ‘parent‘
    id = Column(Integer, primary_key=True)
    children = relationship("Child")
 
class Child(Base):
    __tablename__ = ‘child‘
    id = Column(Integer, primary_key=True)
    parent_id = Column(Integer, ForeignKey(‘parent.id‘))

To establish a bidirectional relationship in one-to-many, where the “reverse” side is a many to one, specify an additional relationship() and connect the two using therelationship.back_populates parameter:

1
2
3
4
5
6
7
8
9
10
class Parent(Base):
    __tablename__ = ‘parent‘
    id = Column(Integer, primary_key=True)
    children = relationship("Child", back_populates="parent")
 
class Child(Base):
    __tablename__ = ‘child‘
    id = Column(Integer, primary_key=True)
    parent_id = Column(Integer, ForeignKey(‘parent.id‘))
    parent = relationship("Parent", back_populates="children")

Child will get a parent attribute with many-to-one semantics.

Alternatively, the backref option may be used on a single relationship() instead of usingback_populates:

1
2
3
4
class Parent(Base):
    __tablename__ = ‘parent‘
    id = Column(Integer, primary_key=True)
    children = relationship("Child", backref="parent")

  

  

附,原生sql join查询

几个Join的区别 http://stackoverflow.com/questions/38549/difference-between-inner-and-outer-joins 

  • INNER JOIN: Returns all rows when there is at least one match in BOTH tables
  • LEFT JOIN: Return all rows from the left table, and the matched rows from the right table
  • RIGHT JOIN: Return all rows from the right table, and the matched rows from the left table
1
select host.id,hostname,ip_addr,port,host_group.name from host right join host_group on host.id = host_group.host_id

in SQLAchemy

1
session.query(Host).join(Host.host_groups).filter(HostGroup.name==‘t1‘).group_by("Host").all()

  

group by 查询

1
select name,count(host.id) as NumberOfHosts from host right join host_group on host.id= host_group.host_id group by name;

in SQLAchemy

1
2
3
4
5
6
from sqlalchemy import func
session.query(HostGroup, func.count(HostGroup.name )).group_by(HostGroup.name).all()
 
#another example
session.query(func.count(User.name), User.name).group_by(User.name).all() SELECT count(users.name) AS count_1, users.name AS users_name
FROM users GROUP BY users.name

 

SqlAlchemy ORM

标签:

原文地址:http://www.cnblogs.com/xiajie/p/5343302.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!