码迷,mamicode.com
首页 > 编程语言 > 详细

数据挖掘:关联规则的apriori算法在weka的源码分析

时间:2016-04-12 20:57:17      阅读:597      评论:0      收藏:0      [点我收藏+]

标签:

 

  相对于机器学习,关联规则的apriori算法更偏向于数据挖掘。

 

1) 测试文档中调用weka的关联规则apriori算法,如下

try {
            File file = new File("F:\\tools/lib/data/contact-lenses.arff");
            ArffLoader loader = new ArffLoader();
            loader.setFile(file);
            Instances m_instances = loader.getDataSet();
            
            Discretize discretize = new Discretize();
            discretize.setInputFormat(m_instances);
            m_instances = Filter.useFilter(m_instances, discretize);
            Apriori apriori = new Apriori();
            apriori.buildAssociations(m_instances);
            System.out.println(apriori.toString());
        } catch (Exception e) {
            e.printStackTrace();
        }

步骤

1 读取数据集data,并提取样本集instances

2 离散化属性Discretize

3 创建Apriori 关联规则模型

4 输出大频率项集和关联规则集

 

2) 创建分类器的时候,调用设置默认参数方法

  public void resetOptions() {

    m_removeMissingCols = false;
    m_verbose = false;
    m_delta = 0.05;
    m_minMetric = 0.90;
    m_numRules = 10;
    m_lowerBoundMinSupport = 0.1;
    m_upperBoundMinSupport = 1.0;
    m_significanceLevel = -1;
    m_outputItemSets = false;
    m_car = false;
    m_classIndex = -1;
  }

参数详细解析,见后面的备注1

 

3)buildAssociations方法的解析,源码如下

public void buildAssociations(Instances instances) throws Exception {

    double[] confidences, supports;
    int[] indices;
    FastVector[] sortedRuleSet;
    int necSupport = 0;

    instances = new Instances(instances);

    if (m_removeMissingCols) {
      instances = removeMissingColumns(instances);
    }
    if (m_car && m_metricType != CONFIDENCE)
      throw new Exception("For CAR-Mining metric type has to be confidence!");

    // only set class index if CAR is requested
    if (m_car) {
      if (m_classIndex == -1) {
        instances.setClassIndex(instances.numAttributes() - 1);
      } else if (m_classIndex <= instances.numAttributes() && m_classIndex > 0) {
        instances.setClassIndex(m_classIndex - 1);
      } else {
        throw new Exception("Invalid class index.");
      }
    }

    // can associator handle the data?
    getCapabilities().testWithFail(instances);

    m_cycles = 0;

    // make sure that the lower bound is equal to at least one instance
    double lowerBoundMinSupportToUse = (m_lowerBoundMinSupport
        * instances.numInstances() < 1.0) ? 1.0 / instances.numInstances()
        : m_lowerBoundMinSupport;

    if (m_car) {
      // m_instances does not contain the class attribute
      m_instances = LabeledItemSet.divide(instances, false);

      // m_onlyClass contains only the class attribute
      m_onlyClass = LabeledItemSet.divide(instances, true);
    } else
      m_instances = instances;

    if (m_car && m_numRules == Integer.MAX_VALUE) {
      // Set desired minimum support
      m_minSupport = lowerBoundMinSupportToUse;
    } else {
      // Decrease minimum support until desired number of rules found.
      m_minSupport = m_upperBoundMinSupport - m_delta;
      m_minSupport = (m_minSupport < lowerBoundMinSupportToUse) ? lowerBoundMinSupportToUse
          : m_minSupport;
    }

    do {

      // Reserve space for variables
      m_Ls = new FastVector();
      m_hashtables = new FastVector();
      m_allTheRules = new FastVector[6];
      m_allTheRules[0] = new FastVector();
      m_allTheRules[1] = new FastVector();
      m_allTheRules[2] = new FastVector();
      if (m_metricType != CONFIDENCE || m_significanceLevel != -1) {
        m_allTheRules[3] = new FastVector();
        m_allTheRules[4] = new FastVector();
        m_allTheRules[5] = new FastVector();
      }
      sortedRuleSet = new FastVector[6];
      sortedRuleSet[0] = new FastVector();
      sortedRuleSet[1] = new FastVector();
      sortedRuleSet[2] = new FastVector();
      if (m_metricType != CONFIDENCE || m_significanceLevel != -1) {
        sortedRuleSet[3] = new FastVector();
        sortedRuleSet[4] = new FastVector();
        sortedRuleSet[5] = new FastVector();
      }
      if (!m_car) {
        // Find large itemsets and rules
        findLargeItemSets();
        if (m_significanceLevel != -1 || m_metricType != CONFIDENCE)
          findRulesBruteForce();
        else
          findRulesQuickly();
      } else {
        findLargeCarItemSets();
        findCarRulesQuickly();
      }

      // prune rules for upper bound min support
      if (m_upperBoundMinSupport < 1.0) {
        pruneRulesForUpperBoundSupport();
      }

      int j = m_allTheRules[2].size() - 1;
      supports = new double[m_allTheRules[2].size()];
      for (int i = 0; i < (j + 1); i++)
        supports[j - i] = ((double) ((ItemSet) m_allTheRules[1]
            .elementAt(j - i)).support()) * (-1);
      indices = Utils.stableSort(supports);
      for (int i = 0; i < (j + 1); i++) {
        sortedRuleSet[0].addElement(m_allTheRules[0].elementAt(indices[j - i]));
        sortedRuleSet[1].addElement(m_allTheRules[1].elementAt(indices[j - i]));
        sortedRuleSet[2].addElement(m_allTheRules[2].elementAt(indices[j - i]));
        if (m_metricType != CONFIDENCE || m_significanceLevel != -1) {
          sortedRuleSet[3].addElement(m_allTheRules[3]
              .elementAt(indices[j - i]));
          sortedRuleSet[4].addElement(m_allTheRules[4]
              .elementAt(indices[j - i]));
          sortedRuleSet[5].addElement(m_allTheRules[5]
              .elementAt(indices[j - i]));
        }
      }

      // Sort rules according to their confidence
      m_allTheRules[0].removeAllElements();
      m_allTheRules[1].removeAllElements();
      m_allTheRules[2].removeAllElements();
      if (m_metricType != CONFIDENCE || m_significanceLevel != -1) {
        m_allTheRules[3].removeAllElements();
        m_allTheRules[4].removeAllElements();
        m_allTheRules[5].removeAllElements();
      }
      confidences = new double[sortedRuleSet[2].size()];
      int sortType = 2 + m_metricType;

      for (int i = 0; i < sortedRuleSet[2].size(); i++)
        confidences[i] = ((Double) sortedRuleSet[sortType].elementAt(i))
            .doubleValue();
      indices = Utils.stableSort(confidences);
      for (int i = sortedRuleSet[0].size() - 1; (i >= (sortedRuleSet[0].size() - m_numRules))
          && (i >= 0); i--) {
        m_allTheRules[0].addElement(sortedRuleSet[0].elementAt(indices[i]));
        m_allTheRules[1].addElement(sortedRuleSet[1].elementAt(indices[i]));
        m_allTheRules[2].addElement(sortedRuleSet[2].elementAt(indices[i]));
        if (m_metricType != CONFIDENCE || m_significanceLevel != -1) {
          m_allTheRules[3].addElement(sortedRuleSet[3].elementAt(indices[i]));
          m_allTheRules[4].addElement(sortedRuleSet[4].elementAt(indices[i]));
          m_allTheRules[5].addElement(sortedRuleSet[5].elementAt(indices[i]));
        }
      }

      if (m_verbose) {
        if (m_Ls.size() > 1) {
          System.out.println(toString());
        }
      }

      if (m_minSupport == lowerBoundMinSupportToUse
          || m_minSupport - m_delta > lowerBoundMinSupportToUse)
        m_minSupport -= m_delta;
      else
        m_minSupport = lowerBoundMinSupportToUse;

      necSupport = Math.round((float) ((m_minSupport * m_instances
          .numInstances()) + 0.5));

      m_cycles++;
    } while ((m_allTheRules[0].size() < m_numRules)
        && (Utils.grOrEq(m_minSupport, lowerBoundMinSupportToUse))
        /* (necSupport >= lowerBoundNumInstancesSupport) */
        /* (Utils.grOrEq(m_minSupport, m_lowerBoundMinSupport)) */&& (necSupport >= 1));
    m_minSupport += m_delta;
  }

主要步骤解析:

1 使用removeMissingColumns方法,删除缺失属性的列

2 如果参数m_car是真,则进行划分;因为m_car是真的意思是挖掘与关联规则的有关的规则,所以划分成两部分,一部分有关,一部分无关,删除无关的即可;

3 方法findLargeItemSets查找大频率项集;具体源码见下面

4 方法findRulesQuickly查找所有的关联规则集;

5 方法pruneRulesForUpperBoundSupport删除不满足最小置信度的规则集;

6)按照置信度把规则集排序;

 

 

4)查找大频率项集findLargeItemSets源码如下:

private void findLargeItemSets() throws Exception {

    FastVector kMinusOneSets, kSets;
    Hashtable hashtable;
    int necSupport, necMaxSupport, i = 0;

    // Find large itemsets

    // minimum support
    necSupport = (int) (m_minSupport * m_instances.numInstances() + 0.5);
    necMaxSupport = (int) (m_upperBoundMinSupport * m_instances.numInstances() + 0.5);

    kSets = AprioriItemSet.singletons(m_instances);
    AprioriItemSet.upDateCounters(kSets, m_instances);
    kSets = AprioriItemSet.deleteItemSets(kSets, necSupport,
        m_instances.numInstances());
    if (kSets.size() == 0)
      return;
    do {
      m_Ls.addElement(kSets);
      kMinusOneSets = kSets;
      kSets = AprioriItemSet.mergeAllItemSets(kMinusOneSets, i,
          m_instances.numInstances());
      hashtable = AprioriItemSet.getHashtable(kMinusOneSets,
          kMinusOneSets.size());
      m_hashtables.addElement(hashtable);
      kSets = AprioriItemSet.pruneItemSets(kSets, hashtable);
      AprioriItemSet.upDateCounters(kSets, m_instances);
      kSets = AprioriItemSet.deleteItemSets(kSets, necSupport,
          m_instances.numInstances());
      i++;
    } while (kSets.size() > 0);
  }

主要步骤:

1  类AprioriItemSet.singletons方法,将给定数据集的头信息转换成一个项集的集合, 头信息中的值的顺序是按字典序。

2 方法upDateCounters查找一频繁项目集;

3 AprioriItemSet.deleteItemSets方法,删除不满足支持度区间的项目集;

4 使用方法mergeAllItemSets(源码如下)由k-1项目集循环生出k频繁项目集,并且使用方法deleteItemSets删除不满足支持度区间的项目集;

 

5)由k-1项目集循环生出k频繁项目集的方法mergeAllItemSets,源码如下:

public static FastVector mergeAllItemSets(FastVector itemSets, int size,
      int totalTrans) {

    FastVector newVector = new FastVector();
    ItemSet result;
    int numFound, k;

    for (int i = 0; i < itemSets.size(); i++) {
      ItemSet first = (ItemSet) itemSets.elementAt(i);
      out: for (int j = i + 1; j < itemSets.size(); j++) {
        ItemSet second = (ItemSet) itemSets.elementAt(j);
        result = new AprioriItemSet(totalTrans);
        result.m_items = new int[first.m_items.length];

        // Find and copy common prefix of size ‘size‘
        numFound = 0;
        k = 0;
        while (numFound < size) {
          if (first.m_items[k] == second.m_items[k]) {
            if (first.m_items[k] != -1)
              numFound++;
            result.m_items[k] = first.m_items[k];
          } else
            break out;
          k++;
        }

        // Check difference
        while (k < first.m_items.length) {
          if ((first.m_items[k] != -1) && (second.m_items[k] != -1))
            break;
          else {
            if (first.m_items[k] != -1)
              result.m_items[k] = first.m_items[k];
            else
              result.m_items[k] = second.m_items[k];
          }
          k++;
        }
        if (k == first.m_items.length) {
          result.m_counter = 0;
          newVector.addElement(result);
        }
      }
    }
    return newVector;
  }

调用方法generateRules生出关联规则

 

6)生出关联规则的方法generateRules,源码如下

public FastVector[] generateRules(double minConfidence,
      FastVector hashtables, int numItemsInSet) {

    FastVector premises = new FastVector(), consequences = new FastVector(), conf = new FastVector();
    FastVector[] rules = new FastVector[3], moreResults;
    AprioriItemSet premise, consequence;
    Hashtable hashtable = (Hashtable) hashtables.elementAt(numItemsInSet - 2);

    // Generate all rules with one item in the consequence.
    for (int i = 0; i < m_items.length; i++)
      if (m_items[i] != -1) {
        premise = new AprioriItemSet(m_totalTransactions);
        consequence = new AprioriItemSet(m_totalTransactions);
        premise.m_items = new int[m_items.length];
        consequence.m_items = new int[m_items.length];
        consequence.m_counter = m_counter;

        for (int j = 0; j < m_items.length; j++)
          consequence.m_items[j] = -1;
        System.arraycopy(m_items, 0, premise.m_items, 0, m_items.length);
        premise.m_items[i] = -1;

        consequence.m_items[i] = m_items[i];
        premise.m_counter = ((Integer) hashtable.get(premise)).intValue();
        premises.addElement(premise);
        consequences.addElement(consequence);
        conf.addElement(new Double(confidenceForRule(premise, consequence)));
      }
    rules[0] = premises;
    rules[1] = consequences;
    rules[2] = conf;
    pruneRules(rules, minConfidence);

    // Generate all the other rules
    moreResults = moreComplexRules(rules, numItemsInSet, 1, minConfidence,
        hashtables);
    if (moreResults != null)
      for (int i = 0; i < moreResults[0].size(); i++) {
        rules[0].addElement(moreResults[0].elementAt(i));
        rules[1].addElement(moreResults[1].elementAt(i));
        rules[2].addElement(moreResults[2].elementAt(i));
      }
    return rules;
  }

 

几个我想说的

1)不想输出为0的项,可以设置成缺失值?,因为算法会自动删除缺失值的列,不参与关联规则的生成;

2)按照置信度对关联规则排序,是关联规则分类器中使用的,只是提取关联规则,不需要排序;

 

 

 

备注

1)weka的关联规则中参数的详解

1.        car 如果设为真,则会挖掘类关联规则而不是全局关联规则。也就是只保留与类标签有关的关联规则,设置索引为-1
2.        classindex 类属性索引。如果设置为-1,最后的属性被当做类属性。
3.        delta 以此数值为迭代递减单位。不断减小支持度直至达到最小支持度或产生了满足数量要求的规则。
4.        lowerBoundMinSupport 最小支持度下界。
5.        metricType 度量类型。设置对规则进行排序的度量依据。可以是:置信度(类关联规则只能用置信度挖掘),提升度(lift),杠杆率(leverage),确信度(conviction)。
在 Weka中设置了几个类似置信度(confidence)的度量来衡量规则的关联程度,它们分别是:
a)        Lift : P(A,B)/(P(A)P(B)) Lift=1时表示A和B独立。这个数越大(>1),越表明A和B存在于一个购物篮中不是偶然现象,有较强的关联度.
b)        Leverage :P(A,B)-P(A)P(B)Leverage=0时A和B独立,Leverage越大A和B的关系越密切
c)        Conviction:P(A)P(!B)/P(A,!B) (!B表示B没有发生) Conviction也是用来衡量A和B的独立性。从它和lift的关系(对B取反,代入Lift公式后求倒数)可以看出,这个值越大, A、B越关联。
6.        minMtric 度量的最小值。
7.        numRules 要发现的规则数。
8.        outputItemSets 如果设置为真,会在结果中输出项集。
9.        removeAllMissingCols 移除全部为缺省值的列。
 
10.    significanceLevel 重要程度。重要性测试(仅用于置信度)。
 
11.    upperBoundMinSupport 最小支持度上界。 从这个值开始迭代减小最小支持度。
 
12.    verbose 如果设置为真,则算法会以冗余模式运行。

2)控制台输出结果

Apriori
=======

Minimum support: 0.2 (5 instances)
Minimum metric <confidence>: 0.9
Number of cycles performed: 16

Generated sets of large itemsets:

Size of set of large itemsets L(1): 11

Size of set of large itemsets L(2): 21

Size of set of large itemsets L(3): 6

Best rules found:

 1. tear-prod-rate=reduced 12 ==> contact-lenses=none 12    conf:(1)
 2. spectacle-prescrip=myope tear-prod-rate=reduced 6 ==> contact-lenses=none 6    conf:(1)
 3. spectacle-prescrip=hypermetrope tear-prod-rate=reduced 6 ==> contact-lenses=none 6    conf:(1)
 4. astigmatism=no tear-prod-rate=reduced 6 ==> contact-lenses=none 6    conf:(1)
 5. astigmatism=yes tear-prod-rate=reduced 6 ==> contact-lenses=none 6    conf:(1)
 6. contact-lenses=soft 5 ==> astigmatism=no 5    conf:(1)
 7. contact-lenses=soft 5 ==> tear-prod-rate=normal 5    conf:(1)
 8. tear-prod-rate=normal contact-lenses=soft 5 ==> astigmatism=no 5    conf:(1)
 9. astigmatism=no contact-lenses=soft 5 ==> tear-prod-rate=normal 5    conf:(1)
10. contact-lenses=soft 5 ==> astigmatism=no tear-prod-rate=normal 5    conf:(1)

 

 

转置请注明出处:http://www.cnblogs.com/rongyux/

 

数据挖掘:关联规则的apriori算法在weka的源码分析

标签:

原文地址:http://www.cnblogs.com/rongyux/p/5384184.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!