标签:
Java语言建立了垃圾收集机制,用以跟踪正在使用的对象和发现并回收不再使用(引用)的对象。该机制可以有效防范动态内存分配中可能发生的两个危险:因内存垃圾过多而引发的内存耗尽,以及不恰当的内存释放所造成的内存非法引用。
垃圾收集算法的核心思想是:对虚拟机可用内存空间,即堆空间中的对象进行识别,如果对象正在被引用,那么称其为存活对象,反之,如果对象不再被引用,则为垃圾对象,可以回收其占据的空间,用于再分配。垃圾收集算法的选择和垃圾收集系统参数的合理调节直接影响着系统性能,因此需要开发人员做比较深入的了解。
JVM进行次GC的频率很高,但因为这种GC占用时间极短,所以对系统产生的影响不大。更值得关注的是主GC的触发条件,因为它对系统影响很明显。总的来说,有两个条件会触发主GC:
①当应用程序空闲时,即没有应用线程在运行时,GC会被调用。因为GC在优先级最低的线程中进行,所以当应用忙时,GC线程就不会被调用,但以下条件除外。
②Java堆内存不足时,GC会被调用。当应用线程在运行,并在运行过程中创建新对象,若这时内存空间不足,JVM就会强制地调用GC线程,以便回收内存用于新的分配。若GC一次之后仍不能满足内存分配的要求,JVM会再进行两次GC作进一步的尝试,若仍无法满足要求,则 JVM将报“out of memory”的错误,Java应用将停止。
由于是否进行主GC由JVM根据系统环境决定,而系统环境在不断的变化当中,所以主GC的运行具有不确定性,无法预计它何时必然出现,但可以确定的是对一个长期运行的应用来说,其主GC是反复进行的。
根据上述GC的机制,程序的运行会直接影响系统环境的变化,从而影响GC的触发。若不针对GC的特点进行设计和编码,就会出现内存驻留等一系列负面影响。为了避免这些影响,基本的原则就是尽可能地减少垃圾和减少GC过程中的开销。具体措施包括以下几个方面:
(1)不要显式调用System.gc()
此函数建议JVM进行主GC,虽然只是建议而非一定,但很多情况下它会触发主GC,从而增加主GC的频率,也即增加了间歇性停顿的次数。
(2)尽量减少临时对象的使用
临时对象在跳出函数调用后,会成为垃圾,少用临时变量就相当于减少了垃圾的产生,从而延长了出现上述第二个触发条件出现的时间,减少了主GC的机会。
(3)对象不用时最好显式置为Null
一般而言,为Null的对象都会被作为垃圾处理,所以将不用的对象显式地设为Null,有利于GC收集器判定垃圾,从而提高了GC的效率。
(4)尽量使用StringBuffer,而不用String来累加字符串(详见blog另一篇文章JAVA中String与StringBuffer)
由于String是固定长的字符串对象,累加String对象时,并非在一个String对象中扩增,而是重新创建新的String对象,如 Str5=Str1+Str2+Str3+Str4,这条语句执行过程中会产生多个垃圾对象,因为对次作“+”操作时都必须创建新的String对象,但这些过渡对象对系统来说是没有实际意义的,只会增加更多的垃圾。避免这种情况可以改用StringBuffer来累加字符串,因StringBuffer 是可变长的,它在原有基础上进行扩增,不会产生中间对象。
(5)能用基本类型如Int,Long,就不用Integer,Long对象
基本类型变量占用的内存资源比相应对象占用的少得多,如果没有必要,最好使用基本变量。
(6)尽量少用静态对象变量
静态变量属于全局变量,不会被GC回收,它们会一直占用内存。
(7)分散对象创建或删除的时间
集中在短时间内大量创建新对象,特别是大对象,会导致突然需要大量内存,JVM在面临这种情况时,只能进行主GC,以回收内存或整合内存碎片,从而增加主GC的频率。集中删除对象,道理也是一样的。它使得突然出现了大量的垃圾对象,空闲空间必然减少,从而大大增加了下一次创建新对象时强制主GC 的机会。
既然垃圾收集器的任务是回收垃圾对象所占的空间供新的对象使用,那么垃圾收集器如何确定某个对象是“垃圾”?—即通过什么方法判断一个对象可以被回收了。
在java中是通过引用来和对象进行关联的,也就是说如果要操作对象,必须通过引用来进行。那么很显然一个简单的办法就是通过引用计数来判断一个对象是否可以被回收。不失一般性,如果一个对象没有任何引用与之关联,则说明该对象基本不太可能在其他地方被使用到,那么这个对象就成为可被回收的对象了。这种方式成为引用计数法。
这种方式的特点是实现简单,而且效率较高,但是它无法解决循环引用的问题,因此在Java中并没有采用这种方式(Python采用的是引用计数法)。
1 public class Main { 2 public static void main(String[] args) { 3 MyObject object1 = new MyObject(); 4 MyObject object2 = new MyObject(); 5 6 object1.object = object2; 7 object2.object = object1; 8 9 object1 = null; 10 object2 = null; 11 } 12 } 13 14 class MyObject{ 15 public Object object = null; 16 }
最后面两句将object1和object2赋值为null,也就是说object1和object2指向的对象已经不可能再被访问,但是由于它们互相引用对方,导致它们的引用计数都不为0,那么垃圾收集器就永远不会回收它们。
为了解决这个问题,在Java中采取了 可达性分析法。该方法的基本思想是通过一系列的“GC Roots”对象作为起点进行搜索,如果在“GC Roots”和一个对象之间没有可达路径,则称该对象是不可达的,不过要注意的是被判定为不可达的对象不一定就会成为可回收对象。被判定为不可达的对象要成为可回收对象必须至少经历两次标记过程,如果在这两次标记过程中仍然没有逃脱成为可回收对象的可能性,则基本上就真的成为可回收对象了。
在主流的商用程序语言(Java、C#,甚至包括前面提到的古老的Lisp)的主流实现中,都是称通过可达性分析(Reachability Analysis)来判定对象是否存活的。这个算法的基本思路就是通过一系列的称为“GC Roots”的对象作为起始点,从这些节点开始向下搜索,搜索所走过的路径称为引用链(Reference Chain),当一个对象到GC Roots没有任何引用链相连(用图论的话来说,就是从GC Roots到这个对象不可达)时,则证明此对象是不可用的。虚拟机中的对象如果对于gc roots节点不可达的,那么就会被回收掉。
下面来看个例子:
1 Object aobj = new Object ( ) ; 2 Object bobj = new Object ( ) ; 3 Object cobj = new Object ( ) ; 4 aobj = bobj; 5 aobj = cobj; 6 cobj = null; 7 aobj = null;
第几行有可能会使得某个对象成为可回收对象?第7行的代码会导致有对象会成为可回收对象。
再看一个例子:
1 String str = new String("hello"); 2 SoftReference<String> sr = new SoftReference<String>(new String("java")); 3 WeakReference<String> wr = new WeakReference<String>(new String("world"));
这三句哪句会使得String对象成为可回收对象?第2句和第3句,第2句在内存不足的情况下会将String对象判定为可回收对象,第3句无论什么情况下String对象都会被判定为可回收对象。
小结——最后总结一下平常遇到的比较常见的将对象判定为可回收对象的情况:
1)引用置空:显示地将某个引用赋值为null或者将已经指向某个对象的引用指向新的对象,比如下面的代码:
1 Object obj = new Object(); 2 obj = null; 3 Object obj1 = new Object(); 4 Object obj2 = new Object(); 5 obj1 = obj2;
2)局部引用:局部引用所指向的对象,比如下面这段代码:
1 void fun() { 2 3 ..... 4 for(int i=0;i<10;i++) { 5 Object obj = new Object(); 6 System.out.println(obj.getClass()); 7 } 8 }
循环每执行完一次,生成的Object对象都会成为可回收的对象。
3)弱引用:只有弱引用与其关联的对象,比如:
1 WeakReference<String> wr = new WeakReference<String>(new String("world"));
这是最基础的垃圾回收算法,之所以说它是最基础的是因为它最容易实现,思想也是最简单的。标记-清除算法分为两个阶段:标记阶段和清除阶段。标记阶段的任务是标记出所有需要被回收的对象,清除阶段就是回收被标记的对象所占用的空间。具体过程如下图所示:
从图中可以很容易看出标记-清除算法实现起来比较容易,但是有一个比较严重的问题就是容易产生内存碎片,碎片太多可能会导致后续过程中需要为大对象分配空间时无法找到足够的空间而提前触发新的一次垃圾收集动作。
为了解决Mark-Sweep算法的缺陷,Copying算法就被提了出来。它将可用内存按容量划分为大小相等的两块,每次只使用其中的一块。当这一块的内存用完了,就将还存活着的对象复制到另外一块上面,然后再把已使用的内存空间一次清理掉,这样一来就不容易出现内存碎片的问题。具体过程如下图所示:
这种算法虽然实现简单,运行高效且不容易产生内存碎片,但是却对内存空间的使用做出了高昂的代价,因为能够使用的内存缩减到原来的一半。
很显然,Copying算法的效率跟存活对象的数目多少有很大的关系,如果存活对象很多,那么Copying算法的效率将会大大降低。
为了解决Copying算法的缺陷,充分利用内存空间,提出了Mark-Compact算法。该算法标记阶段和Mark-Sweep一样,但是在完成标记之后,它不是直接清理可回收对象,而是将存活对象都向一端移动,然后清理掉端边界以外的内存。具体过程如下图所示:
分代收集算法是目前大部分JVM的垃圾收集器采用的算法。它的核心思想是根据对象存活的生命周期将内存划分为若干个不同的区域。一般情况下将堆区划分为老年代(Tenured Generation)和新生代(Young Generation),老年代的特点是每次垃圾收集时只有少量对象需要被回收,而新生代的特点是每次垃圾回收时都有大量的对象需要被回收,那么就可以根据不同代的特点采取最适合的收集算法。
目前大部分垃圾收集器对于新生代都采取Copying算法,因为新生代中每次垃圾回收都要回收大部分对象,也就是说需要复制的操作次数较少,但是实际中并不是按照1:1的比例来划分新生代的空间的,一般来说是将新生代划分为一块较大的Eden空间和两块较小的Survivor空间,每次使用Eden空间和其中的一块Survivor空间,当进行回收时,将Eden和Survivor中还存活的对象复制到另一块Survivor空间中,然后清理掉Eden和刚才使用过的Survivor空间。
而由于老年代的特点是每次回收都只回收少量对象,一般使用的是Mark-Compact算法。
注意,在堆区之外还有一个代就是永久代(Permanet Generation),它用来存储class类、常量、方法描述等。对永久代的回收主要回收两部分内容:废弃常量和无用的类。
http://blog.csdn.net/wuqiong_524itcast/article/details/25378685
http://www.cnblogs.com/dolphin0520/p/3783345.html
标签:
原文地址:http://www.cnblogs.com/nathan909/p/5376373.html