标签:
定义:图是由一组顶点和一组能够将两个顶点相连的边组成的。
特殊的图:
有自环:与自己相连
有平行边:也称为多重图
相关术语:
大多数我们会省略“简单”二字
图的密度:已连接顶点对占未连接的比例
常见的存储方式:(邻接集是采用Set存储,以方便去重以及删除顶点)
代码(内部使用了背包,也就是链表)
public class Graph {
private static final String NEWLINE = System.getProperty("line.separator");
private final int V;
private int E;
private Bag<Integer>[] adj;
public Graph(int V) {
if (V < 0) throw new IllegalArgumentException("Number of vertices must be nonnegative");
this.V = V;
this.E = 0;
adj = (Bag<Integer>[]) new Bag[V];
for (int v = 0; v < V; v++) {
adj[v] = new Bag<Integer>();
}
}
public Graph(In in) {
this(in.readInt());
int E = in.readInt();
if (E < 0) throw new IllegalArgumentException("Number of edges must be nonnegative");
for (int i = 0; i < E; i++) {
int v = in.readInt();
int w = in.readInt();
addEdge(v, w);
}
}
public Graph(Graph G) {
this(G.V());
this.E = G.E();
for (int v = 0; v < G.V(); v++) {
// reverse so that adjacency list is in same order as original
Stack<Integer> reverse = new Stack<Integer>();
for (int w : G.adj[v]) {
reverse.push(w);
}
for (int w : reverse) {
adj[v].add(w);
}
}
}
public int V() {
return V;
}
public int E() {
return E;
}
// throw an IndexOutOfBoundsException unless 0 <= v < V
private void validateVertex(int v) {
if (v < 0 || v >= V)
throw new IndexOutOfBoundsException("vertex " + v + " is not between 0 and " + (V-1));
}
public void addEdge(int v, int w) {
validateVertex(v);
validateVertex(w);
E++;
adj[v].add(w);
adj[w].add(v);
}
public Iterable<Integer> adj(int v) {
validateVertex(v);
return adj[v];
}
public int degree(int v) {
validateVertex(v);
return adj[v].size();
}
public String toString() {
StringBuilder s = new StringBuilder();
s.append(V + " vertices, " + E + " edges " + NEWLINE);
for (int v = 0; v < V; v++) {
s.append(v + ": ");
for (int w : adj[v]) {
s.append(w + " ");
}
s.append(NEWLINE);
}
return s.toString();
}
}
可以解决判断是否连通以及找出两点的一条路经问题(不一定是最短的)
public class DepthFirstPaths {
private boolean[] marked; // marked[v] = is there an s-v path?
private int[] edgeTo; // edgeTo[v] = last edge on s-v path
private final int s; // source vertex
public DepthFirstPaths(Graph G, int s) {
this.s = s;
edgeTo = new int[G.V()];
marked = new boolean[G.V()];
dfs(G, s);
}
// depth first search from v
private void dfs(Graph G, int v) {
marked[v] = true;
for (int w : G.adj(v)) {
if (!marked[w]) {
edgeTo[w] = v;
dfs(G, w);
}
}
}
public boolean hasPathTo(int v) {
return marked[v];
}
public Iterable<Integer> pathTo(int v) {
if (!hasPathTo(v)) return null;
Stack<Integer> path = new Stack<Integer>();
for (int x = v; x != s; x = edgeTo[x])
path.push(x);
path.push(s);
return path;
}
}
可以解决单源最短路径问题(此处无权重)
深度和广度的区别:
public class BreadthFirstPaths {
private static final int INFINITY = Integer.MAX_VALUE;
private boolean[] marked; // marked[v] = is there an s-v path
private int[] edgeTo; // edgeTo[v] = previous edge on shortest s-v path
private int[] distTo; // distTo[v] = number of edges shortest s-v path
public BreadthFirstPaths(Graph G, int s) {
marked = new boolean[G.V()];
distTo = new int[G.V()];
edgeTo = new int[G.V()];
bfs(G, s);
assert check(G, s);
}
/**
* Computes the shortest path between any one of the source vertices in <tt>sources</tt>
* and every other vertex in graph <tt>G</tt>.
* @param G the graph
* @param sources the source vertices
*/
public BreadthFirstPaths(Graph G, Iterable<Integer> sources) {
marked = new boolean[G.V()];
distTo = new int[G.V()];
edgeTo = new int[G.V()];
for (int v = 0; v < G.V(); v++)
distTo[v] = INFINITY;
bfs(G, sources);
}
// breadth-first search from a single source
private void bfs(Graph G, int s) {
Queue<Integer> q = new Queue<Integer>();
for (int v = 0; v < G.V(); v++)
distTo[v] = INFINITY;
distTo[s] = 0;
marked[s] = true;
q.enqueue(s);
while (!q.isEmpty()) {
int v = q.dequeue();
for (int w : G.adj(v)) {
if (!marked[w]) {
edgeTo[w] = v;
distTo[w] = distTo[v] + 1;
marked[w] = true;
q.enqueue(w);
}
}
}
}
// breadth-first search from multiple sources
private void bfs(Graph G, Iterable<Integer> sources) {
Queue<Integer> q = new Queue<Integer>();
for (int s : sources) {
marked[s] = true;
distTo[s] = 0;
q.enqueue(s);
}
while (!q.isEmpty()) {
int v = q.dequeue();
for (int w : G.adj(v)) {
if (!marked[w]) {
edgeTo[w] = v;
distTo[w] = distTo[v] + 1;
marked[w] = true;
q.enqueue(w);
}
}
}
}
public boolean hasPathTo(int v) {
return marked[v];
}
public int distTo(int v) {
return distTo[v];
}
public Iterable<Integer> pathTo(int v) {
if (!hasPathTo(v)) return null;
Stack<Integer> path = new Stack<Integer>();
int x;
for (x = v; distTo[x] != 0; x = edgeTo[x])
path.push(x);
path.push(x);
return path;
}
// check optimality conditions for single source
private boolean check(Graph G, int s) {
// check that the distance of s = 0
if (distTo[s] != 0) {
StdOut.println("distance of source " + s + " to itself = " + distTo[s]);
return false;
}
// check that for each edge v-w dist[w] <= dist[v] + 1
// provided v is reachable from s
for (int v = 0; v < G.V(); v++) {
for (int w : G.adj(v)) {
if (hasPathTo(v) != hasPathTo(w)) {
StdOut.println("edge " + v + "-" + w);
StdOut.println("hasPathTo(" + v + ") = " + hasPathTo(v));
StdOut.println("hasPathTo(" + w + ") = " + hasPathTo(w));
return false;
}
if (hasPathTo(v) && (distTo[w] > distTo[v] + 1)) {
StdOut.println("edge " + v + "-" + w);
StdOut.println("distTo[" + v + "] = " + distTo[v]);
StdOut.println("distTo[" + w + "] = " + distTo[w]);
return false;
}
}
}
// check that v = edgeTo[w] satisfies distTo[w] + distTo[v] + 1
// provided v is reachable from s
for (int w = 0; w < G.V(); w++) {
if (!hasPathTo(w) || w == s) continue;
int v = edgeTo[w];
if (distTo[w] != distTo[v] + 1) {
StdOut.println("shortest path edge " + v + "-" + w);
StdOut.println("distTo[" + v + "] = " + distTo[v]);
StdOut.println("distTo[" + w + "] = " + distTo[w]);
return false;
}
}
return true;
}
}
也就是找两点是否连通(是否是等价关系,和union-find算法一样)
代码:借用了深度搜素id标志类别数,count记录每个类的个数
public class CC {
private boolean[] marked; // marked[v] = has vertex v been marked?
private int[] id; // id[v] = id of connected component containing v
private int[] size; // size[id] = number of vertices in given component
private int count; // number of connected components
public CC(Graph G) {
marked = new boolean[G.V()];
id = new int[G.V()];
size = new int[G.V()];
for (int v = 0; v < G.V(); v++) {
if (!marked[v]) {
dfs(G, v);
count++;
}
}
}
// depth-first search
private void dfs(Graph G, int v) {
marked[v] = true;
id[v] = count;
size[count]++;
for (int w : G.adj(v)) {
if (!marked[w]) {
dfs(G, w);
}
}
}
public int id(int v) {
return id[v];
}
public int size(int v) {
return size[id[v]];
}
public int count() {
return count;
}
public boolean connected(int v, int w) {
return id(v) == id(w);
}
public boolean areConnected(int v, int w) {
return id(v) == id(w);
}
}
和之前的union-find算法对比:
实际应用中 union-find更快,因为不需要图的数据结构且是动态算法(常数时间内检查连通性,甚至在添加一条边后)
主要关注hasSelfLoop和haveParallelEdges的写法
public class Cycle {
private boolean[] marked;
private int[] edgeTo;
private Stack<Integer> cycle;
public Cycle(Graph G) {
if (hasSelfLoop(G)) return;
if (hasParallelEdges(G)) return;
marked = new boolean[G.V()];
edgeTo = new int[G.V()];
for (int v = 0; v < G.V(); v++)
if (!marked[v])
dfs(G, -1, v);
}
// does this graph have a self loop?
// side effect: initialize cycle to be self loop
private boolean hasSelfLoop(Graph G) {
for (int v = 0; v < G.V(); v++) {
for (int w : G.adj(v)) {
if (v == w) {
cycle = new Stack<Integer>();
cycle.push(v);
cycle.push(v);
return true;
}
}
}
return false;
}
// does this graph have two parallel edges?
// side effect: initialize cycle to be two parallel edges
private boolean hasParallelEdges(Graph G) {
marked = new boolean[G.V()];
for (int v = 0; v < G.V(); v++) {
// check for parallel edges incident to v
for (int w : G.adj(v)) {
if (marked[w]) {
cycle = new Stack<Integer>();
cycle.push(v);
cycle.push(w);
cycle.push(v);
return true;
}
marked[w] = true;
}
// reset so marked[v] = false for all v
for (int w : G.adj(v)) {
marked[w] = false;
}
}
return false;
}
public boolean hasCycle() {
return cycle != null;
}
public Iterable<Integer> cycle() {
return cycle;
}
private void dfs(Graph G, int u, int v) {
marked[v] = true;
for (int w : G.adj(v)) {
// short circuit if cycle already found
if (cycle != null) return;
if (!marked[w]) {
edgeTo[w] = v;
dfs(G, v, w);
}
// check for cycle (but disregard reverse of edge leading to v)
else if (w != u) {
cycle = new Stack<Integer>();
for (int x = v; x != w; x = edgeTo[x]) {
cycle.push(x);
}
cycle.push(w);
cycle.push(v);
}
}
}
}
能不能够用两种颜色将图的所有顶点着色(图的二分性)
public class TwoColor {
private boolean[] marked;
private boolean[] color;
private boolean isTwoColorable = true;
public TwoColor(Graph G){
marked = new boolean[G.V()];
color = new boolean[G.V()];
for (int s = 0; s < G.V(); s++) {
if(!marked[s]){
dfs(G,s);
}
}
}
private void dfs(Graph G, int v) {
// TODO Auto-generated method stub
marked[v] = true;
for(int w:G.adj(v)){
if(!marked[w]){
color[w] = !color[v];
dfs(G,w);
}
else if (color[w]=color[v]) isTwoColorable = false;
}
}
public boolean isBipartite(){
return isTwoColorable;
}
}
顶点名是字符串(不是用数字表示了)
public class SymbolGraph {
private ST<String, Integer> st; // string -> index
private String[] keys; // index -> string
private Graph G;
public SymbolGraph(String filename, String delimiter) {
st = new ST<String, Integer>();
// First pass builds the index by reading strings to associate
// distinct strings with an index
In in = new In(filename);
// while (in.hasNextLine()) {
while (!in.isEmpty()) {
String[] a = in.readLine().split(delimiter);
for (int i = 0; i < a.length; i++) {
if (!st.contains(a[i]))
st.put(a[i], st.size());
}
}
StdOut.println("Done reading " + filename);
// inverted index to get string keys in an aray
keys = new String[st.size()];
for (String name : st.keys()) {
keys[st.get(name)] = name;
}
// second pass builds the graph by connecting first vertex on each
// line to all others
G = new Graph(st.size());
in = new In(filename);
while (in.hasNextLine()) {
String[] a = in.readLine().split(delimiter);
int v = st.get(a[0]);
for (int i = 1; i < a.length; i++) {
int w = st.get(a[i]);
G.addEdge(v, w);
}
}
}
public boolean contains(String s) {
return st.contains(s);
}
public int index(String s) {
return st.get(s);
}
public String name(int v) {
return keys[v];
}
public Graph G() {
return G;
}
}
标签:
原文地址:http://blog.csdn.net/guanhang89/article/details/51174377