码迷,mamicode.com
首页 > 编程语言 > 详细

Java进阶之----HashMap源码分析

时间:2016-04-19 12:19:01      阅读:278      评论:0      收藏:0      [点我收藏+]

标签:

今天我们接着来看HashMap的源码,对几个常用的方法进行分析。在分析之前,我们还是要先对HashMap的结构有一个了解。看过之前我分析的ArrayList和LinkedList源码的朋友应该清楚,ArrayList内部是以数组实现的,LinkedList内部是以链表实现的。而HashMap则是对数组和链表的结合,虽然看上去复杂了一些,不过仔细分析一下,还是很好理解的。我们来看一张图片,是我根据我的理解画的。

技术分享

我们在来看看Entry的内部结构是什么:

技术分享

以上两个图,相信大家对HashMap的结构有一个大致的了解了,在真正看代码之前,我先来介绍一下基本知识。从第一个图可以看出来,有的数组元素里连接着另一个Entry实例,有的只有一个,为什么会这样呢?是因为相同的key经过hash计算后,被分配到了相同的位置。为什么会出现这样的结果呢?是因为出现了hash冲突,即在一个较小的空间里存放较多的数据,必然会有一部分数据没有地方存放,那么这多出来的数据,就要挂在已存在的元素的下方,形成链表结构。以此来解决hash冲突。

下边我们跟着代码,来看看HashMap的具体实现。

内部使用的变量

    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // 默认的Entry数组的初始化大小,默认为16

    static final int MAXIMUM_CAPACITY = 1 << 30; // 最大的Entry数组大小

    static final float DEFAULT_LOAD_FACTOR = 0.75f; // 负载因子,默认0.75,它的作用在下边我进行说明

    static final Entry<?,?>[] EMPTY_TABLE = {}; // 空的Entry数组

    transient Entry<K,V>[] table = (Entry<K,V>[]) EMPTY_TABLE;

    transient int size; // HashMap中元素的个数

    int threshold; // 临界值,<span style="font-family:Arial, Helvetica, sans-serif;">threshold = 负载因子 * 当前数组容量,实际个数超过临界值时,会进行扩容</span>

    final float loadFactor; // 负载因子

    transient int modCount; // 更改次数

这里说明一下负载因子,负载因子,我们可以理解为空间的填满程度。

1、负载因子越大,填满的元素越多,空间利用率增加,hash冲突的机会增加,每个元素下挂载的链表会越来越长,同时会导致查找元素的效率变得低下。

2、负载因子越小,填满的元素越少,空间利用率降低,hash冲突减少,但是数组中的元素过于稀疏,导致数组中很多空间还没有用就开始扩容,不过好处是查找的元素的效率相对高一些。

所以,必然要在“查找效率”和“空间利用率”之中做一个折中,让它们处在一个相对的平衡状态。0.75就是这样的一个相对平衡的状态。

HashMap源码分析

构造方法分析

                                                                                                                       public HashMap(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);

        this.loadFactor = loadFactor;
        threshold = initialCapacity;
        init();
    }


    public HashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }


    public HashMap() {
        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR);
    }


    public HashMap(Map<? extends K, ? extends V> m) {
        this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
                      DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR);
        inflateTable(threshold);

        putAllForCreate(m);
    }
我们可以看到,一共有4个构造方法,前3个都很简单,只是简单的赋值,并没有其他操作。
我们来看最后一个构造方法,跟进inflateTable方法
    private void inflateTable(int toSize) {
        // Find a power of 2 >= toSize
        int capacity = roundUpToPowerOf2(toSize);

        threshold = (int) Math.min(capacity * loadFactor, MAXIMUM_CAPACITY + 1);
        table = new Entry[capacity];
        initHashSeedAsNeeded(capacity);
    }
可以看到,操作就是初始化Entry数组,在确定数组大小之前,还做了一个操作,我们来看看到底做了什么。
    private static int roundUpToPowerOf2(int number) {
        
        return number >= MAXIMUM_CAPACITY
                ? MAXIMUM_CAPACITY
                : (number > 1) ? Integer.highestOneBit((number - 1) << 1) : 1;
    }
可能是我的水平不高,我对Java的位操作并不是很感冒,看到上边的代码,我完全不知道是在干嘛,没关系,我们写一个测试代码,看看他到底是干嘛的。
final int MAXIMUM_CAPACITY = 1 << 30;

	@Test
	public void test() {
		for (int i = 0; i < 100; i++) {
			System.out.println("i=" + i + "-->" + (i >= MAXIMUM_CAPACITY ? MAXIMUM_CAPACITY : (i > 1) ? Integer.highestOneBit((i - 1) << 1) : 1));
		}
	}
测试代码很简单,我们来看看结果
技术分享                    技术分享 
看出来了吧?这段代码的作用是找到大于给定数字的2的n次方的数。。(我表述不太清楚。。表达能力有待提高啊)
找到这个数之后,将它作为初始化的数组大小,为什么是2的N次方,一会儿在解释。。

上边就是构造方法,其实其实就是做了初始化数组,赋值等工作,没有其他的。

put方法分析

    public V put(K key, V value) {
    	// 若为第一次put,则先初始化数组
        if (table == EMPTY_TABLE) {
            inflateTable(threshold);
        }
        // key为null,防在table[0]即数组第一个的位置
        if (key == null)
            return putForNullKey(value);
        // 根据key计算hash值,具体计算hash的算法我不太懂,还望有前辈能指点一下
        int hash = hash(key);
        // 根据hash值和表的长度,确定这个元素存放在数组的第几个位置,即求得元素在数组中的位置的索引值
        int i = indexFor(hash, table.length);
        // 遍历该位置的链表,如果有重复的key,则将value覆盖
        for (Entry<K,V> e = table[i]; e != null; e = e.next) {
            Object k;
            if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
                V oldValue = e.value;
                e.value = value;
                e.recordAccess(this);
                return oldValue;
            }
        }
        // 修改次数+1
        modCount++;
        // 将新加入的数据挂载到table[i]的位置
        addEntry(hash, key, value, i);
        return null;
    }

我们来看看代码,putForNullKey方法,存储key为null方法,实质上与其他的值没有太大差别,区别是key为null的hashCode为0,所以他总是存储在table[0]的位置。
    private V putForNullKey(V value) {
        for (Entry<K,V> e = table[0]; e != null; e = e.next) {
            if (e.key == null) {
                V oldValue = e.value;
                e.value = value;
                e.recordAccess(this);
                return oldValue;
            }
        }
        modCount++;
        addEntry(0, null, value, 0);
        return null;
    }
之后是根据key求得hashCode,不过里边的算法看不太懂,看过几篇文章,但是讲述的不是很明白,不过我们知道它的作用是计算hashCode的即可
    final int hash(Object k) {
        int h = hashSeed;
        if (0 != h && k instanceof String) {
            return sun.misc.Hashing.stringHash32((String) k);
        }

        h ^= k.hashCode();

        // 一系列位操作,不太明白要干什么,大致作用就是让元素在数组里分布的均匀一些
        h ^= (h >>> 20) ^ (h >>> 12);
        return h ^ (h >>> 7) ^ (h >>> 4);
    }
之后就是根据hashCode和数组的长度,返回元素存储的索引位置
    static int indexFor(int h, int length) {
        return h & (length-1);
    }
这块就能印证之前数组长度为什么要为2的N次方了。我们来分析一下
首先,若数组长度为2的N次方,则数组的长度必然为偶数,则,偶数-1必然为奇数,在2进制的表示中,奇数的最后一位为1,所以,与奇数做“&”操作,最后的结果可能为奇数,也可能为偶数。
其次,若数组长度不为偶数,则奇数-1为偶数,偶数在2进制中最后一位为0,那么与偶数做“&”操作,最后的结果只可能是偶数,不可能为奇数,所以在奇数位置的空间不会存储到元素,所以会有二分之一的空间被浪费掉。
综上所述,数组长度取2的N次方,目的是为了能让元素均匀的分布在数组中,减小发生冲突的机会。

得到存储的位置之后, 在数组中的该位置判断是否有值,没有的话就新增一个节点,挂载到数组这个位置的链表上,如果有值的话,则需要遍历当前链表,查看是否有重复的key,若有重复的key,则覆盖对应的value。若与已存在的链表的key不重复的话,则新增节点。
    void addEntry(int hash, K key, V value, int bucketIndex) {
    	// 判断数组是否需要扩容
        if ((size >= threshold) && (null != table[bucketIndex])) {
            resize(2 * table.length);
            hash = (null != key) ? hash(key) : 0;
            bucketIndex = indexFor(hash, table.length);
        }
        
        createEntry(hash, key, value, bucketIndex);
    }

    void createEntry(int hash, K key, V value, int bucketIndex) {
        Entry<K,V> e = table[bucketIndex];
        table[bucketIndex] = new Entry<>(hash, key, value, e);
        size++;
    }

首先在新增元素前先判断是否需要扩容,我们先讨论不需要扩容的情况。
1、先将数组该位置的链表取出,然后新建Entry对象,将新建的Entry对象的next指向刚刚取出的已存在的链表
如图所示
技术分享
我们再来看看需要扩容的情况,当现有的元素个数大于等于临界值的时候需要进行扩容,跟进resize方法
    void resize(int newCapacity) {
        Entry[] oldTable = table;
        int oldCapacity = oldTable.length;
        if (oldCapacity == MAXIMUM_CAPACITY) {
            threshold = Integer.MAX_VALUE;
            return;
        }

        Entry[] newTable = new Entry[newCapacity];
        transfer(newTable, initHashSeedAsNeeded(newCapacity));
        table = newTable;
        threshold = (int)Math.min(newCapacity * loadFactor, MAXIMUM_CAPACITY + 1);
    }

    void transfer(Entry[] newTable, boolean rehash) {
        int newCapacity = newTable.length;
        for (Entry<K,V> e : table) {
            while(null != e) {
                Entry<K,V> next = e.next;
                if (rehash) {
                    e.hash = null == e.key ? 0 : hash(e.key);
                }
                int i = indexFor(e.hash, newCapacity);
                e.next = newTable[i];
                newTable[i] = e;
                e = next;
            }
        }
    }

重点在transfer方法中,这也是HashMap不保证存放元素顺序的根源。实质上是新初始化了一个Entry数组,之后再次遍历之前的Entry数组,根据它们的hashCode重新计算他们在新数组的存放位置。在重新分配之后,原有的元素位置一定会发生改变,所以HashMap不会保证元素的存入取出顺序。

以上就是对put方法的分析。总结起来就是,使用key计算得到hashCode,之后得到该元素在数组中的存放位置,然后将其放入链表的头部,放入的过程中要对容量进行判断。

get方法分析

get方法相对来说就简单了许多
    public V get(Object key) {
        if (key == null)
            return getForNullKey();
        Entry<K,V> entry = getEntry(key);

        return null == entry ? null : entry.getValue();
    }

    final Entry<K,V> getEntry(Object key) {
        if (size == 0) {
            return null;
        }

        int hash = (key == null) ? 0 : hash(key);
        for (Entry<K,V> e = table[indexFor(hash, table.length)];
             e != null;
             e = e.next) {
            Object k;
            if (e.hash == hash &&
                ((k = e.key) == key || (key != null && key.equals(k))))
                return e;
        }
        return null;
    }
其实原理就是得到位置索引,遍历链表。其余的就是一些条件判断,相对还是很好理解的。

我们经常使用的几种方法中,大致上都是这样的一个套路,理解了它的数据结构之后,在结合代码研究,还是很好理解的。

Java进阶之----HashMap源码分析

标签:

原文地址:http://blog.csdn.net/zw0283/article/details/51177547

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!