标签:
Map-Reduce是一种计算模型,简单的说就是将大批量的工作(数据)分解(MAP)执行,然后再将结果合并成最终结果(REDUCE)。
MongoDB提供的Map-Reduce非常灵活,对于大规模数据分析也相当实用。
以下是MapReduce的基本语法:
>db.collection.mapReduce(
function() {emit(key,value);}, //map 函数
function(key,values) {return reduceFunction}, //reduce 函数
{
out: collection,
query: document,
sort: document,
limit: number
}
)
使用 MapReduce 要实现两个函数 Map 函数和 Reduce 函数,Map 函数调用 emit(key, value), 遍历 collection 中所有的记录, 将key 与 value 传递给 Reduce 函数进行处理。
Map 函数必须调用 emit(key, value) 返回键值对。
参数说明:
考虑以下文档结构存储用户的文章,文档存储了用户的 user_name 和文章的 status 字段:
>db.posts.insert({
"post_text": "菜鸟教程,最全的技术文档。",
"user_name": "mark",
"status":"active"
})
WriteResult({ "nInserted" : 1 })
>db.posts.insert({
"post_text": "菜鸟教程,最全的技术文档。",
"user_name": "mark",
"status":"active"
})
WriteResult({ "nInserted" : 1 })
>db.posts.insert({
"post_text": "菜鸟教程,最全的技术文档。",
"user_name": "mark",
"status":"active"
})
WriteResult({ "nInserted" : 1 })
>db.posts.insert({
"post_text": "菜鸟教程,最全的技术文档。",
"user_name": "mark",
"status":"active"
})
WriteResult({ "nInserted" : 1 })
>db.posts.insert({
"post_text": "菜鸟教程,最全的技术文档。",
"user_name": "mark",
"status":"disabled"
})
WriteResult({ "nInserted" : 1 })
>db.posts.insert({
"post_text": "菜鸟教程,最全的技术文档。",
"user_name": "runoob",
"status":"disabled"
})
WriteResult({ "nInserted" : 1 })
>db.posts.insert({
"post_text": "菜鸟教程,最全的技术文档。",
"user_name": "runoob",
"status":"disabled"
})
WriteResult