标签:
for(int k=1; k<=n; k++) for(int i=1; i<=n; i++) for(int j=1; j<=n; j++) { gra[i][j]=min(gra[i][j],gra[i][k]+gra[k][j]); }
void Dijkstra(int n, int v, int *dist, int *prev, int c[maxx][maxx]) { bool s[maxx]; // 判断是否已存入该点到S集合中 for(int i=1; i<=n; ++i) { dist[i] = c[v][i]; s[i] = 0; // 初始都未用过该点 if(dist[i] == maxint) prev[i] = 0; else prev[i] = v; } dist[v] = 0; s[v] = 1; // 依次将未放入S集合的结点中,取dist[]最小值的结点,放入结合S中 // 一旦S包含了所有V中顶点,dist就记录了从源点到所有其他顶点之间的最短路径长度 for(int i=2; i<=n; ++i) { int tmp = maxint; int u = v; // 找出当前未使用的点j的dist[j]最小值 for(int j=1; j<=n; ++j) if((!s[j]) && dist[j]<tmp) { u = j; // u保存当前邻接点中距离最小的点的号码 tmp = dist[j]; } s[u] = 1; // 表示u点已存入S集合中 // 更新dist for(int j=1; j<=n; ++j) if((!s[j]) && c[u][j]<maxint) { int newdist = dist[u] + c[u][j]; if(newdist < dist[j]) { dist[j] = newdist; prev[j] = u; } } } }
标签:
原文地址:http://www.cnblogs.com/superxuezhazha/p/5418290.html