标签:
时间回到2011年底。小米公司在这一年8月16日首次发布了手机,立刻引起了市场轰动。随后,在一天多的时间内预约了30万台。之后的几个月,这30万台小米手机通过排号的方式依次发货,到当年年底全部发完。
然后便是开放购买。最初的开放购买直接在小米的商城系统上进行,但我们那时候完全低估了“抢购”的威力。瞬间爆发的平常几十倍流量迅速淹没了小米网商城服务器,数据库死锁、网页刷新超时,用户购买体验非常差。
市场需求不等人,一周后又要进行下一轮开放抢购。一场风暴就等在前方,而我们只有一周的时间了,整个开发部都承担着巨大的压力。
小米网可以采用的常规优化手段并不太多,增加带宽、服务器、寻找代码中的瓶颈点优化代码。但是,小米公司只是一家刚刚成立一年多的小公司,没有那么多的服务器和带宽。而且,如果代码中有瓶颈点,即使能增加一两倍的服务器和带宽,也一样会被瞬间爆发的几十倍负载所冲垮。而要优化商城的代码,时间上已没有可能。电商网站很复杂,说不定某个不起眼的次要功能,在高负载情况下就会成为瓶颈点拖垮整个网站。
这时开发组面临一个选择,是继续在现有商城上优化,还是单独搞一套抢购系统?我们决定冒险一试,我和几个同事一起突击开发一套独立的抢购系统,希望能够绝境逢生。
摆在我们面前的是一道似乎无解的难题,它要达到的目标如下:
设计方案就是多个限制条件下求得的解。时间、可靠性、成本,这是我们面临的限制条件。要在那么短的时间内解决难题,必须选择最简单可靠的技术,必须是经过足够验证的技术,解决方案必须是最简单的。
在高并发情况下,影响系统性能的一个关键因素是:数据的一致性要求。在前面所列的目标中,有两项是关于数据一致性的:商品剩余数量、用户是否已经抢购成功。如果要保证严格的数据一致性,那么在集群中需要一个中心服务器来存储和操作这个值。这会造成性能的单点瓶颈。
在分布式系统设计中,有一个CAP原理。“一致性、可用性、分区容忍性”三个要素最多只能同时实现两点,不可能三者兼顾。我们要面对极端的爆发流量负载,分区容忍性和可用性会非常重要,因此决定牺牲数据的强一致性要求。
做出这个重要的决定后,剩下的设计决定就自然而然地产生了:
最后的系统原理见后面的第一版抢购系统原理图(图1)。
图1 第一版抢购系统原理图
系统基本原理:
在PHP服务器上,通过一个文件来表示商品是否售罄。如果文件存在即表示已经售罄。PHP程序接收用户抢购请求后,查看用户是否预约以及是否抢购过,然后检查售罄标志文件是否存在。对预约用户,如果未售罄并且用户未抢购成功过,即返回抢购成功的结果,并记录一条日志。日志通过异步的方式传输到中心控制节点,完成记数等操作。
最后,抢购成功用户的列表异步导入商场系统,抢购成功的用户在接下来的几个小时内下单即可。这样,流量高峰完全被抢购系统挡住,商城系统不需要面对高流量。
在这个分布式系统的设计中,对持久化数据的处理是影响性能的重要因素。
我们没有选择传统关系型数据库,而是选用了Redis服务器。
选用Redis基于下面几个理由。
在整个系统中,最频繁的I/O操作,就是PHP对Redis的读写操作。如果处理不好,Redis服务器将成为系统的性能瓶颈。
系统中对Redis的操作包含三种类型的操作:查询是否有预约、是否抢购成功、写入抢购成功状态。为了提升整体的处理能力,可采用读写分离方式。
所有的读操作通过从库完成,所有的写操作只通过控制端一个进程写入主库。
在PHP对Redis服务器的读操作中,需要注意的是连接数的影响。如果PHP是通过短连接访问Redis服务器的,则在高峰时有可能堵塞Redis服务器,造成雪崩效应。这一问题可以通过增加Redis从库的数量来解决。
而对于Redis的写操作,在我们的系统中并没有压力。因为系统是通过异步方式,收集PHP产生的日志,由一个管理端的进程来顺序写入Redis主库。
另一个需要注意的点是Redis的持久化配置。用户的预约信息全部存储在Redis的进程内存中,它向磁盘保存一次,就会造成一次等待。严重的话会导致抢购高峰时系统前端无法响应。因此要尽量避免持久化操作。我们的做法是,所有用于读取的从库完全关闭持久化,一个用于备份的从库打开持久化配置。同时使用日志作为应急恢复的保险措施。
整个系统使用了大约30台服务器,其中包括20台PHP服务器,以及10台Redis服务器。
在接下来的抢购中,它顺利地抗住了压力。回想起当时的场景,真是非常的惊心动魄。
经过了两年多的发展,小米网已经越来越成熟。公司准备在2014年4月举办一次盛大的“米粉节”活动。这次持续一整天的购物狂欢节是小米网电商的一次成人礼。商城前端、库存、物流、售后等环节都将经历一次考验。
对于抢购系统来说,最大的不同就是一天要经历多轮抢购冲击,而且有多种不同商品参与抢购。我们之前的抢购系统,是按照一周一次抢购来设计及优化的,根本无法支撑米粉节复杂的活动。而且经过一年多的修修补补,第一版抢购系统积累了很多的问题,正好趁此机会对它进行彻底重构。
第二版系统主要关注系统的灵活性与可运营性(图2)。对于高并发的负载能力,稳定性、准确性这些要求,已经是基础性的最低要求了。我希望将这个系统做得可灵活配置,支持各种商品各种条件组合,并且为将来的扩展打下良好的基础。
图2 第二版系统总体结构图
在这一版中,抢购系统与商城系统依然隔离,两个系统之间通过约定的数据结构交互,信息传递精简。通过抢购系统确定一个用户抢得购买资格后,用户自动在商城系统中将商品加入购物车。
在之前第一版抢购系统中,我们后来使用Go语言开发了部分模块,积累了一定的经验。因此第二版系统的核心部分,我们决定使用Go语言进行开发。
我们可以让Go程序常驻内存运行,各种配置以及状态信息都可以保存在内存中,减少I/O操作开销。对于商品数量信息,可以在进程内进行操作。不同商品可以分别保存到不同的服务器的Go进程中,以此来分散压力,提升处理速度。
系统服务端主要分为两层架构,即HTTP服务层和业务处理层。HTTP服务层用于维持用户的访问请求,业务处理层则用于进行具体的逻辑判断。两层之间的数据交互通过消息队列来实现。
HTTP服务层主要功能如下:
业务处理层主要功能如下:
用户的抢购请求通过消息队列,依次进入业务处理层的Go进程里,然后顺序地处理请求,将抢购结果返回给前面的HTTP服务层。
商品剩余数量等信息,根据商品编号分别保存在业务层特定的服务器进程中。我们选择保证商品数据的一致性,放弃了数据的分区容忍性。
这两个模块用于抢购过程中的请求处理,系统中还有相应的策略控制模块,以及防刷和系统管理模块等(图3)。
图3 第二版系统详细结构图
在第二版抢购系统的开发过程中,我们遇到了HTTP层Go程序内存消耗过多的问题。
由于HTTP层主要用于维持住用户的访问请求,每个请求中的数据都会占用一定的内存空间,当大量的用户进行访问时就会导致内存使用量不断上涨。当内存占用量达到一定程度(50%)时,Go中的GC机制会越来越慢,但仍然会有大量的用户进行访问,导致出现“雪崩”效应,内存不断上涨,最终机器内存的使用率会达到90%以上甚至99%,导致服务不可用。
在Go语言原生的HTTP包中会为每个请求分配8KB的内存,用于读缓存和写缓存。而在我们的服务场景中只有GET请求,服务需要的信息都包含在HTTP Header中,并没有Body,实际上不需要如此大的内存进行存储。
为了避免读写缓存的频繁申请和销毁,HTTP包建立了一个缓存池,但其长度只有4,因此在大量连接创建时,会大量申请内存,创建新对象。而当大量连接释放时,又会导致很多对象内存无法回收到缓存池,增加了GC的压力。
HTTP协议是构建在TCP协议之上的,Go的原生HTTP模块中是没有提供直接的接口关闭底层TCP连接的,而HTTP 1.1中对连接状态默认使用keep-alive方式。这样,在客户端多次请求服务端时,可以复用一个TCP连接,避免频繁建立和断开连接,导致服务端一直等待读取下一个请求而不释放连接。但同样在我们的服务场景中不存在TCP连接复用的需求。当一个用户完成一个请求后,希望能够尽快关闭连接。keep-alive方式导致已完成处理的用户连接不能尽快关闭,连接无法释放,导致连接数不断增加,对服务端的内存和带宽都有影响。
通过上面的分析,我们的解决办法如下。
通过这样的改进,我们的HTTP前端服务器最大稳定连接数可以超过一百万。
第二版抢购系统顺利完成了米粉节的考验。
总结
技术方案需要依托具体的问题而存在。脱离了应用场景,无论多么酷炫的技术都失去了价值。抢购系统面临的现实问题复杂多变,我们也依然在不断地摸索改进。
作者韩祝鹏,小米公司程序员。早期负责MIUI系统发布与运营,后带领小米网系统组设计与开发小米网抢购系统。
标签:
原文地址:http://blog.csdn.net/fansunion/article/details/51208276