码迷,mamicode.com
首页 > Web开发 > 详细

cojs 疯狂的粉刷匠 疯狂的斐波那契 题解报告

时间:2016-04-27 09:31:44      阅读:154      评论:0      收藏:0      [点我收藏+]

标签:

疯狂的斐波那契

学习了一些奇怪的东西之后出的题目

最外层要模p是显然的,然而内层并不能模p

那么模什么呢,显然是模斐波那契的循环节

那么我们可以一层层的求出每层的斐波那契循环节

之后在从内向外用矩阵乘法计算即可

至于如何求斐波那契的最小循环节,参见本博客的Fib求循环节那篇文章

当然这个题可以只求循环节,不求最小循环节,这样会好写的多

(然而我不会告诉你这样的话最后会爆掉long long)

 

疯狂的粉刷匠

我们设树上一共有k个联通点集

包含点i的联通点集有f(i)个

那么答案显然是sigma(f(i)/k)

首先我们考虑如何求k,对于任意一个树上的联通点集

一定有且仅有一个深度最小的点

设g(i)表示i是联通块深度最小的点的方案数

设j为i的孩子,那么g(i)显然为g(j)+1的连乘积

这样k=sigma(g(i))

之后我们考虑f(i),对于任意一个点所在的联通点集

这个点只有两种情况:

1、是深度最小的点

2、不是深度最小的点

如果出现2情况,则其父亲一定在这个联通块内

设i的父亲为j

我们就可以得到f(i)=g(i) + g(i)*( f(j)/(g(i)+1) )

之后统计答案即可

cojs 疯狂的粉刷匠 疯狂的斐波那契 题解报告

标签:

原文地址:http://www.cnblogs.com/joyouth/p/5437444.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!