标签:
p0Num, p1Num = zeros(numWords), zeros(numWords)
p0Denom, p1Denom = 0.0, 0.0
p0Num, p1Num = ones(numWords), ones(numWords)
p0Denom, p1Denom = 2.0, 2.0
p1Vect = p1Num / p1Denom
p0Vect = p0Num / p0Denom
p1Vect = log(p1Num / p1Denom)
p0Vect = log(p0Num / p0Denom)
# -*- coding:utf-8 -*-
from numpy import *
def loadDataSet():
postingList = [[‘my‘, ‘dog‘, ‘has‘, ‘flea‘, ‘problems‘, ‘help‘, ‘please‘],
[‘maybe‘, ‘not‘, ‘take‘, ‘him‘, ‘to‘, ‘dog‘, ‘park‘, ‘stupid‘],
[‘my‘, ‘dalmation‘, ‘is‘, ‘so‘, ‘cute‘, ‘I‘, ‘love‘, ‘him‘],
[‘stop‘, ‘posting‘, ‘stupid‘, ‘worthless‘, ‘garbage‘],
[‘mr‘, ‘licks‘, ‘ate‘, ‘my‘, ‘steak‘, ‘how‘, ‘to‘, ‘stop‘, ‘him‘],
[‘quit‘, ‘buying‘, ‘worthless‘, ‘dog‘, ‘food‘, ‘stupid‘]]
classVec = [0, 1, 0, 1, 0, 1] # 1 is abusive, 0 not
return postingList, classVec
# 创建一个在所有文档中出现的不重复词的列表
def createVocabList(dataSet):
vocabSet = set([])
for document in dataSet:
vocabSet = vocabSet | set(document)
return list(vocabSet)
# 输入词汇列表和某个文档,输出文档向量,向量的每一元素为1或0,分别表示词汇表中的单词在输入文档中是否出现。
def setOfWords2Vec(vocabList, inputSet):
returnVec = [0] * len(vocabList)
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)] = 1
else:
print "the word: %s is not in my Vocabulary!" % word
return returnVec
# 基于文档词袋模型改进后的模型
def bagOfWords2VecMN(vocabList, inputSet):
returnVec = [0] * len(vocabList)
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)] += 1
return returnVec
# 输入参数为文档矩阵trainMatrix,以及由每篇文档类别标签所构成的向量trainCategory
def trainNB0(trainMatrix, trainCategory):
numTrainDocs = len(trainMatrix)
numWords = len(trainMatrix[0])
pAbusive = sum(trainCategory) / float(numTrainDocs) # 2分类问题,仅0,1构成向量,此处计算1
p0Num, p1Num = ones(numWords), ones(numWords)
p0Denom, p1Denom = 2.0, 2.0
for i in range(numTrainDocs):
if trainCategory[i] == 1:
p1Num += trainMatrix[i]
p1Denom += sum(trainMatrix[i])
else:
p0Num += trainMatrix[i]
p0Denom += sum(trainMatrix[i])
p1Vect = log(p1Num / p1Denom)
p0Vect = log(p0Num / p0Denom)
return p0Vect, p1Vect, pAbusive
# 要分类的向量vec2Classify
def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
p1 = sum(vec2Classify * p1Vec) + log(pClass1)
p0 = sum(vec2Classify * p0Vec) + log(1.0 - pClass1)
if p1 > p0:
return 1
else:
return 0
def testingNB():
listOPosts, listClasses = loadDataSet()
myVocabList = createVocabList(listOPosts)
trainMat = []
for postinDoc in listOPosts:
trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
p0V, p1V, pAb = trainNB0(array(trainMat), array(listClasses))
testEntry = [‘love‘, ‘my‘, ‘dalmation‘]
thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
print testEntry, ‘classified as: ‘, classifyNB(thisDoc, p0V, p1V, pAb)
testEntry = [‘stupid‘, ‘garbage‘]
thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
print testEntry, ‘classified as: ‘, classifyNB(thisDoc, p0V, p1V, pAb)
# 文件解析及完整的垃圾邮件测试函数
def textParse(bigString):
import re
listOfTokens = re.split(r‘\W*‘, bigString)
return [tok.lower() for tok in listOfTokens if len(tok) > 2]
def spamTest():
import random
# 导入并解析文本文件
docList, classList, fullText = [], [], []
for i in range(1, 26):
wordList = textParse(open(‘email/spam/%d.txt‘ % i, ‘r‘).read())
docList.append(wordList)
fullText.extend(wordList)
classList.append(1)
wordList = textParse(open(‘email/ham/%d.txt‘ % i, ‘r‘).read())
docList.append(wordList)
fullText.extend(wordList)
classList.append(0)
vocabList = createVocabList(docList)
trainingSet = range(50)
testSet = []
# 随机构建训练集(训练集40个,测试集10个)
for i in range(10):
randIndex = int(random.uniform(0, len(trainingSet)))
testSet.append(trainingSet[randIndex])
del(trainingSet[randIndex])
trainMat, trainClasses = [], []
for docIndex in trainingSet:
trainMat.append(setOfWords2Vec(vocabList, docList[docIndex]))
trainClasses.append(classList[docIndex])
p0V, p1V, pSpam = trainNB0(array(trainMat), array(trainClasses))
# 对测试集分类
errorCount = 0
for docIndex in testSet:
wordVector = setOfWords2Vec(vocabList, docList[docIndex])
if classifyNB(array(wordVector), p0V, p1V, pSpam) != classList[docIndex]:
errorCount += 1
print ‘the error rate is: ‘, float(errorCount) / len(testSet)
朴素贝叶斯-Machine Learining In Action学习笔记
标签:
原文地址:http://www.cnblogs.com/woaielf/p/5441660.html